The largest database of trusted experimental protocols

Accurate mass 6230 tof

Manufactured by Agilent Technologies
Sourced in United States

The Accurate Mass 6230 TOF is a time-of-flight mass spectrometer designed for accurate mass measurements. It provides high-resolution mass analysis with precise mass accuracy.

Automatically generated - may contain errors

4 protocols using accurate mass 6230 tof

1

Metabolomics Analysis of Mycobacterial Strains

Check if the same lab product or an alternative is used in the 5 most similar protocols
Liquid chromatography mass spectrometry (LC-MS) differentiation and detection of WT Mtb, ICL knock-down, BCG, M. bovis, and ΔRD1 metabolites were performed with an Agilent Accurate Mass 6230 TOF coupled with an Agilent 1290 Liquid Chromatography system using a Cogent Diamond Hydride Type C column (Microsolve Technologies, Long Branch, NJ, USA) using solvents and configuration as previously described68 (link). An isocratic pump was used for continuous infusion of a reference mass solution to allow mass axis calibration. Detected ions were classified as metabolites based on unique accurate mass-retention time identifiers for masses showing the expected distribution of accompanying isotopologues. Metabolites were analyzed using Agilent Qualitative Analysis B.07.00 and Profinder B.06.00 software (Agilent Technologies, Santa Clara, CA, USA) with a mass tolerance of <0.005 Da. Standards of authentic chemicals of known amounts were mixed with bacterial lysates and analyzed to generate the standard curves used to quantify metabolite levels. All data obtained by metabolomics were the average of at least two independent triplicates for each condition tested.
+ Open protocol
+ Expand
2

Quantification of Intracellular Rifabutin in A. baumannii

Check if the same lab product or an alternative is used in the 5 most similar protocols
Extractions and measurements were done as previously described 33 (link),34 (link). Log-phase A. baumannii culture was incubated 0.79 or 0.38 μg/mL RBT in the presence or absence of amino acid mixture at 37 °C. Bacteria were harvested 0, 1, 8, and 24 hours and CFUs were determined by plating serial dilutions on agar media. The cell free supernatant was collected by filtration through a 0.22 μm filter. RBT were extracted by adding LC-MS grade acetonitrile:methanol:water (40:40:20) solution that was precooled to − 40 °C. Liquid chromatography mass spectrometry (LC-MS) differentiation and detection of RBT was performed using a Cogent Diamond Hydride Type C column (Microsolve Technologies) with an Agilent Accurate Mass 6230 TOF coupled with an Agilent 1290 Liquid Chromatography system as previously published.33 (link),35 (link) An isocratic pump was used for continuous infusion of a reference mass solution to allow mass axis calibration. Detected RBT ion was validated based on unique accurate mass-retention time identifiers for masses. RBT level was analyzed using Agilent Qualitative Analysis B.08.00 (Agilent Technologies) with a mass tolerance of <0.005 Da. The intracellular RBT was calculated as the [RBT]drug only control – [RBT]filtrate. 3 biological replicates were tested per group.
+ Open protocol
+ Expand
3

Quantification of Intracellular Rifabutin in A. baumannii

Check if the same lab product or an alternative is used in the 5 most similar protocols
Extractions and measurements were done as previously described 33 (link),34 (link). Log-phase A. baumannii culture was incubated 0.79 or 0.38 μg/mL RBT in the presence or absence of amino acid mixture at 37 °C. Bacteria were harvested 0, 1, 8, and 24 hours and CFUs were determined by plating serial dilutions on agar media. The cell free supernatant was collected by filtration through a 0.22 μm filter. RBT were extracted by adding LC-MS grade acetonitrile:methanol:water (40:40:20) solution that was precooled to − 40 °C. Liquid chromatography mass spectrometry (LC-MS) differentiation and detection of RBT was performed using a Cogent Diamond Hydride Type C column (Microsolve Technologies) with an Agilent Accurate Mass 6230 TOF coupled with an Agilent 1290 Liquid Chromatography system as previously published.33 (link),35 (link) An isocratic pump was used for continuous infusion of a reference mass solution to allow mass axis calibration. Detected RBT ion was validated based on unique accurate mass-retention time identifiers for masses. RBT level was analyzed using Agilent Qualitative Analysis B.08.00 (Agilent Technologies) with a mass tolerance of <0.005 Da. The intracellular RBT was calculated as the [RBT]drug only control – [RBT]filtrate. 3 biological replicates were tested per group.
+ Open protocol
+ Expand
4

LC-MS Metabolite Profiling Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
LC-MS analysis was conducted using an Agilent 1290 Infinity LC system containing a Zorbax RRHD Extend C18 column (2.1 mm × 150 mm; Agilent) coupled to an Agilent Accurate Mass 6230 TOF as previously described [41 (link)]. The mobile phase consisted of solvent A (5 mM tributylamine (TBA), 5.5 mM acetic acid in 97% ddH2O 3% methanol) and solvent B (5 mM TBA, 5.5 mM acetic acid in methanol) run at a flow rate of 0.25 mL/min with the following gradient: 0–3.5 min, 0% B; 4–7.5 min, 30% B; 7.5–8 min, 35% B; and 12–16 min, 99% B; followed by a 5 min equilibration period at 0% solvent B prior to injection of the next sample. Dynamic mass axis calibration was accomplished by continuous infusion of a reference mass solution. ESI capillary and fragmentor voltages were set at 4000 V and 125 V respectively. The nebulizer pressure was set to 45 psig and nitrogen drying gas was set to a flow rate of 8 L/min. The drying gas temperature was maintained at 325°C. The MS acquisition rate was 1.5 spectra/ sec and m/z data ranging from 50–1100 was stored. Data was analyzed using Profinder B.08.00 software, and ions were assigned as specific metabolites based on mass accuracy within 5 parts per million (ppm) and retention times within 1 min of those determined for chemical standards.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!