The largest database of trusted experimental protocols

4 protocols using dbco acid

1

Synthesis of PEG8-Cyclooctyne/Amine Conjugate

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 10

Amines on PEG8-Amine (prepared as previously described) were partially reacted with a cyclooctyne-containing molecule to form PEG8-Cyclooctyne/Amine. PEG8-Amine was dissolved in DCM, and 0.5 equivalents of diisopropylcarbodiimide (DIPCDI) were added to a separate flask with DCM while on ice and under nitrogen flow and constant stirring. Next, 0.5 equivalents of hydroxybenzotriazole (HOBt) and 0.5 equivalents of aza-dibenzocyclooctyne with a pendant carboxylic acid (DBCO-acid; Click Chemistry Tools) were added to the mixture and allowed to stir for 10 min. While waiting, one equivalent of N,N-diisopropylethylamine (DIPEA) was added to the dissolved PEG8-Amine. Finally, this mixture was slowly added to the activated DBCO, and the reaction was allowed to proceed for 24 h on an ice bath under constant stirring and nitrogen gas. Following that process, the urea precipitate was filtered out, and rotovapping, diethyl ether precipitation, and drying were performed. The product was then dissolved in distilled H2O and underwent the same extraction procedure that was done for the PEG8-Amine. Further rotovapping, diethyl ether precipitation, and drying were done. 1H NMR (300 MHz, CDCl3, δ): (s, 902.55H, PEG), 5.1 (d, 2H, —CH2—). NMR of the product confirmed the conversion of 50% of amines to cyclooctynes (PEG8-Cyclooctyne/Amine) via the presence of a doublet at 5.1 ppm.

+ Open protocol
+ Expand
2

Synthesis of PEG8-Cyclooctyne/Amine Conjugate

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 10

Amines on PEG8-Amine (prepared as previously described) were partially reacted with a cyclooctyne-containing molecule to form PEG8-Cyclooctyne/Amine.

PEG8-Amine was dissolved in DCM, and 0.5 equivalents of diisopropylcarbodiimide (DIPCDI) were added to a separate flask with DCM while on ice and under nitrogen flow and constant stirring. Next, 0.5 equivalents of hydroxybenzotriazole (HOBt) and 0.5 equivalents of aza-dibenzocyclooctyne with a pendant carboxylic acid (DBCO-acid; Click Chemistry Tools) were added to the mixture and allowed to stir for 10 min. While waiting, one equivalent of N,N-diisopropylethylamine (DIPEA) was added to the dissolved PEG8-Amine. Finally, this mixture was slowly added to the activated DBCO, and the reaction was allowed to proceed for 24 h on an ice bath under constant stirring and nitrogen gas. Following that process, the urea precipitate was filtered out, and rotovapping, diethyl ether precipitation, and drying were performed. The product was then dissolved in distilled H2O and underwent the same extraction procedure that was done for the PEG8-Amine. Further rotovapping, diethyl ether precipitation, and drying were done. 1H NMR (300 MHz, CDCl3, δ): (s, 902.55H, PEG), 5.1 (d, 2H, —CH2—). NMR of the product confirmed the conversion of 50% of amines to cyclooctynes (PEG8-Cyclooctyne/Amine) via the presence of a doublet at 5.1 ppm.

+ Open protocol
+ Expand
3

Synthesis of PEG8-Cyclooctyne/Amine Conjugates

Check if the same lab product or an alternative is used in the 5 most similar protocols
Amines on PEG8-Amine (prepared as previously described) were partially reacted with a cyclooctyne-containing molecule to form PEG8-Cyclooctyne/Amine. PEG8-Amine was dissolved in DCM, and 0.5 equivalents of diisopropylcarbodiimide (DIPCDI) were added to a separate flask with DCM while on ice and under nitrogen flow and constant stirring. Next, 0.5 equivalents of hydroxybenzotriazole (HOBt) and 0.5 equivalents of aza-dibenzocyclooctyne with a pendant carboxylic acid (DBCO-acid; Click Chemistry Tools) were added to the mixture and allowed to stir for 10 minutes. While waiting, one equivalent of N,N-diisopropylethylamine (DIPEA) was added to the dissolved PEG8-Amine. Finally, this mixture was slowly added to the activated DBCO, and the reaction was allowed to proceed for 24 h on an ice bath under constant stirring and nitrogen gas. Following that process, the urea precipitate was filtered out, and rotovapping, diethyl ether precipitation, and drying were performed. The product was then dissolved in distilled H2O and underwent the same extraction procedure that was done for the PEG8-Amine. Further rotovapping, diethyl ether precipitation, and drying were done. 1H NMR (300 MHz, CDCl3, δ): (s, 902.55H, PEG), 5.1 (d, 2H, -CH2-). NMR of the product confirmed the conversion of 50 percent of amines to cyclooctynes (PEG8-Cyclooctyne/Amine) via the presence of a doublet at 5.1 ppm.
+ Open protocol
+ Expand
4

Synthesis of Functionalized Poly(isobutylene-alt-maleic anhydride)

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

Poly(isobutylene-alt-maleic anhydride) (PIMA) (average MW: 6000 Da), histamine, ethylenediamine, N,N-dimethylamino propylamine, 1,3-propanesultone, lipoic acid, biotin, di-tert-butyl dicarbonate, poly(ethylene glycol) (PEG) (average MW: ˜600 Da), dopamine hydrochloride, triethylamine, hydrochloric acid, carbon disulfide, hydrogen peroxide solution, RPMI-1640 medium, dicyclohexylcarbodiimide (DCC), N-hydroxysuccinimide (NHS), tetramethylammonium hydroxide (TMAH), along with most of the chemicals used were purchased from Sigma Aldrich (St Louis, Mo.). Solvents were purchased from Sigma Aldrich (St Louis, Mo.). Deuterated solvents used for NMR experiments were purchased from Cambridge Isotope Laboratories (Andover, Mass.). x-rhodamine-5-(and-6)-isothiocyanate was purchased from Invitrogen, Life Technologies. DBCO-acid (MW=305.11 g/mol) was purchased from Click Chemistry Tools (Scottsdale, Ariz.). The chemicals and solvents were used as received unless otherwise specified.

The syntheses were carried out under N2 passed through an O2 scrubbing tower unless otherwise stated. Air sensitive materials were handled in an MBraun Labmaster glovebox, and standard Schlenk techniques were used when handling air-sensitive materials.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!