The largest database of trusted experimental protocols

168 protocols using gd x

1

Optimizing Oligonucleotide Synthesis Protocols

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

[Figure (not displayed)]

Under an argon atmosphere, in a 10 mL Schlenk tube were placed HO-U-SUC-TOB (82.2 mg, 66.0 μmol) and MeOC(O)-TOB (100 mg, 106 μmol) and they were dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.8 mg, 197 μmol) and U-CE phosphoramidite (150 mg, 197 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1 hr. To the reaction solution was added 2,2,2-trifluoroethanol (70.3 μL, 983 μmol), and the mixture was stirred at room temperature for 15 min. After stirring, PADS (178 mg, 590 μmol) was added and the mixture was stirred at room temperature for 2 hr. 5-Methoxyindole (193 mg, 1.31 mmol) and trifluoroacetic acid (45.2 μL, 590 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (85.5 μL, 649 μmol) was added, acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (2′-O-methyl-uridine-3′-[O-(2-cyanoethyl)]phosphorothionyl 2′-O-methyl-uridin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (197 mg, yield 95%).

(1) Preparation of Reaction Solution

Under an argon atmosphere, HO-dT-SUC-TOB (100 mg, 80.8 μmol) and MeOC(O)-TOB (100 mg, 106 μmol) were dissolved in dehydrated dichloromethane (4.0 mL). To this solution was added a mixture of dG-CE phosphoramidite (204 mg, 242 μmol) and 5-benzylthio-1H-tetrazole (46.5 mg, 242 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 30 min. Completion of the reaction was confirmed by thin layer chromatography (dichloromethane/methanol=10/1 (volume ratio)), a quencher in the kind and amount shown in Table 1 was added and the mixture was stirred at room temperature for 30 min. Then, an oxidant shown in Table 1 (254 μmol, 1.05 molar equivalents relative to phosphoramidite monomer) was added and the mixture was stirred at room temperature for 1 hr to prepare a reaction solution.

(2) Preparation of Test Solution (Pre-Treatment for Analysis)

The obtained reaction solution (50 μL) was dispensed to a 1.5 mL vial, diluted with tetrahydrofuran (450 μL), to which DBU (20 μL) was added and the mixture was stirred for 30 sec to prepare a test solution.

(3) Analysis

The obtained test solution was measured by mass spectrometry using LC-TOF MS (Agilent6230). The amount of the byproduct was calculated by the following formula based on the abundance of each compound observed (object compound and byproduct).
amount(%) of branch product=(abundance of branch product/abundance of object compound)×100amount(%) of phosphoric acid triester cleavage product=(abundance of phosphoric acid triester cleavage product/abundance of object compound)×100

As used herein, the object compound refers to the object oligonucleotide contained in the reaction solution, the branch product refers to a byproduct produced by falling off of an amino-protecting group of nucleic acid base of the object compound and binding of the amino group and a monomer, and the phosphoric acid triester cleavage product refers to a byproduct produced by cleavage of phosphoric acid triester of the object compound. The results are shown in Table 1.

TABLE 1
quencheramount (%)
amountof branchamount (%) of phosphoric acid
kind(molar equivalents)oxidantproducttriester cleavage product
2,2,2-trifluoroethanol5iodine/water/pyridine3.11183
2,2,2-trifluoroethanol1iodine/water/pyridine0.690.16
hexafluoroisopropanol5iodine/water/pyridine1.1461.61
water1iodine/water/pyridine5.08
t-butanol5iodine/water/pyridine10.29 
morpholine5iodine/water/pyridine0.79
morpholine5CSO
5-hydroxy-indole5iodine/water/pyridine0.17
4-nitro-phenol5iodine/water/pyridine0.0831.72
ribose5iodine/water/pyridine4.900.09
phloroglucinol5iodine/water/pyridine0.740.05
tetrahydrofurfuryl alcohol5CSO
diethylene glycol5CSO
ethylene glycol5CSO
acetamide5CSO2.80
(note)
“amount of quencher” = “molar equivalents relative to phosphoramidite monomer”
“—” = “below detection limit”

As shown in Table 1, when CSO was used as an oxidant and morpholine, tetrahydrofurfuryl alcohol, diethylene glycol or ethylene glycol was used as a quencher, production of a branch product and a phosphoric acid triester cleavage product was confirmed to have been effectively suppressed.

(1) Synthesis of Dimer

Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 500 μmol) and Ac-TOB (619 mg, 648 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added methanol (608 μL, 15.0 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (340 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (345 μL, 4.50 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (654 μL, 4.95 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (762 mg, yield 95%).

(2) Synthesis of Trimer

Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (762 mg, 473 μmol) obtained in the above-mentioned (1), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (273 mg, 1.42 mmol) and dA-CE phosphoramidite (1.22 g, 1.42 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added methanol (575 μL, 14.2 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (321 mg, 1.56 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.39 g, 9.46 mmol) and trifluoroacetic acid (326 μL, 4.26 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.

Since Reference Example 1 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.

Example 2

(1) Synthesis of Phosphorothioate Dimer Wherein 3′-Hydroxy Group is Protected by Anchor

[Figure (not displayed)]

Under an argon atmosphere, in a 200 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 0.500 mmol) and AcO-TOB (773 mg, 0.808 mmol) and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2,2,2-trifluoroethanol (1.07 mL, 15.0 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, a mixture of acetic acid (172 μL, 3.00 mmol) and 2,4,6-trimethylpyridine (594 μL, 4.50 mmol) was further added, and the mixture was stirred for 15 min at room temperature. DDTT (340 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (689 μL, 9.00 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (1.31 mL, 9.90 mmol) was added, acetonitrile (150 mL) was added to the reaction solution and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (789 mg, yield 98%).

(2) Synthesis of Phosphorothioate 19-Mer Wherein 3′-Hydroxy Group is Protected by Anchor

An operation similar to that in the above-mentioned (1) was further repeated 18 times to give a 19-mer (deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-benzoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-benzoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) (2.78 g).

(3) Synthesis of Phosphorothioate 20-Mer Wherein 3′-Hydroxy Group is Protected by Anchor and 5′-Hydroxy Group is Protected by DMTr Group

Under an argon atmosphere, in a 200 mL four-necked flask was placed the 19-mer (2.78 g) obtained in the above-mentioned (2), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (287 mg, 1.49 mmol) and dT-CE phosphoramidite (1.11 g, 1.49 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. DDTT (338 mg, 1.64 mmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, acetonitrile (150 mL) was added to the reaction solution and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a 20-mer (5′-O-(4,4′-dimethoxytrityl)-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-acetyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-acetyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-acetyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) as a white solid (2.79 g).

(4) Removal of DMTr Group

Under an argon atmosphere, in a 100 mL two-necked flask was placed the 20-mer (1.00 g) obtained in the above-mentioned (3) and it was dissolved in dehydrated dichloromethane (10 m). 5-Methoxyindole (245 mg, 1.66 mmol) and trifluoroacetic acid (100 μL, 1.31 mmol) were added and the mixture was stirred at room temperature for 1.5 hr, and neutralized with 2,4,6-trimethylpyridine (190 μL, 1.44 mmol). Acetonitrile (150 mL) was added, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a 20-mer wherein the DMTr group was removed (deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-acetyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-acetyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-acetyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) as a white solid (867 mg).

(5) Deprotection

A mixture of the 20-mer (20 mg) obtained in the above-mentioned (4) and 30 wt % aqueous ammonia (5.00 mL) was placed in an autoclave and heated at 55° C. for 16 hr and cooled to room temperature. Insoluble material in the reaction solution was removed by a syringe filter (Whatman 25 mm GD/X PVDF 0.45 μm) and the filtrate was freeze-dried to give the object deoxythymidine-3′-phosphorothionyl-deoxycytidine-3′-phosphorothionyl-deoxycytidine-3′-phosphorothionyl-deoxycytidine-3′-phosphorothionyl-deoxyguanosine-3′-phosphorothionyl-deoxycytidine-3′-phosphorothionyl-deoxycytidine-3′-phosphorothionyl-deoxythymidine-3′-phosphorothionyl-deoxyguanosine-3′-phosphorothionyl-deoxythymidine-3′-phosphorothionyl-deoxyguanosine-3′-phosphorothionyl-deoxyadenosine-3′-phosphorothionyl-deoxycytidine-3′-phosphorothionyl-deoxyadenosine-3′-phosphorothionyl-deoxythymidine-3′-phosphorothionyl-deoxyguanosine-3′-phosphorothionyl-deoxycytidine-3′-phosphorothionyl-deoxyadenosine-3′-phosphorothionyl-deoxythymidine-3′-phosphorothionyl-deoxythymidine.

HPLC (WATERS XBridge™ C18 2.5 μm 4.6×75 mm column, flow rate 1.0 mL/min, 8 mM TEA+100 mM HFIP, MeOH, gradient: 0-10 min; 5 to 60%, λ=260 nm):Rt=6.87 min (83.3 area %); TOF/MS: 6646.05

(1) Preparation of Reaction Solution

Under an argon atmosphere, HO-dT-SUC-TOB (100 mg, 80.8 mol) was dissolved in dehydrated dichloromethane (4.0 mL), a mixed solution of rAOMe(Bz)-CE phosphoramidite (215 mg, 242 mol) and 5-benzylthio-1H-tetrazole (46.5 mg, 242 μmol) in dehydrated acetonitrile (0.5 mL) was added, and the mixture was stirred at room temperature for 1 hr. Completion of the reaction was confirmed by thin layer chromatography (dichloromethane/methanol=10/1 (volume ratio)), a quencher in the kind and amount shown in Table 2 was added and the mixture was stirred at room temperature for 30 min. Then, CSO (58.2 mg, 254 μmol) was added and the mixture was stirred at room temperature for 1 hr. Furthermore, to the reaction solution were added 5-methoxyindole (238 mg, 1.62 mmol) and trifluoroacetic acid (92.5 mL, 1.21 mmol) and the mixture was stirred at room temperature for 18 hr to prepare a reaction solution.

(2) Preparation and Analysis of Test Solution

In the same manner as in Experimental Example 1, the prepared test solution was measured by mass spectrometry and the amount of the byproduct was calculated by the following formula based on the abundance of each compound observed (object compound and byproduct).
amount(%) of+1monomer product=(abundance of+1monomer product/abundance of object compound)×100amount(%) of base-part deprotected product=(abundance of base-part deprotected product/abundance of object compound)×100

As used herein, the +1 monomer product refers to a byproduct produced by binding of one redundant monomer to the object compound, and the base-part deprotected product refers to a byproduct produced by falling off of an amino-protecting group of nucleic acid base of the object compound. The results are shown in Table 2.

TABLE 2
quencher
amountamount (%) ofamount (%) of base-
(molar+1 monomerpart deprotected
kindequivalents)productproduct
morpholine50.730.61
tetrahydrofurfuryl50.11
alcohol
tetrahydrofurfuryl10.09
alcohol
diethylene glycol50.150.06
ethylene glycol50.090.08
acetamide50.36
2-pyrrolidone50.79
(note)
“amount of quencher” = “molar equivalents relative to phosphoramidite monomer”
“—” = “below detection limit”

As shown in Table 2, when tetrahydrofurfuryl alcohol, diethylene glycol or ethylene glycol was used as a quencher, production of a +1 monomer product and a base-part deprotected product was confirmed to have been effectively suppressed.

(1) Synthesis of Dimer

Under an argon atmosphere, in a 10 mL Schlenk tube were placed HO-dT-SUC-TOB (80.4 mg, 64.9 mol) and Ac-TOB (99.6 mg, 104 μmol) and they were dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.4 mg, 195 μmol) and dT-CE phosphoramidite (145 mg, 195 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr was stirred. To the reaction solution was added methanol (39.5 μL, 975 μmol), a mixture of acetic acid (22.3 μL, 390 μmol) was added, and 2,4,6-trimethylpyridine (77.0 μL, 585 μmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (44.0 mg, 215 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (89.6 μL, 1.17 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (170 μL, 1.29 mmol) was added, acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (104 mg, yield 99%).

(2) Synthesis of Trimer

Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (104 mg, 64.2 μmol) obtained in the above-mentioned (1) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.5 mg, 195 μmol) and dA-CE phosphoramidite (165 mg, 195 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added methanol (39.5 μL, 975 μmol), a mixture of acetic acid (22.3 μL, 390 μmol) and 2,4,6-trimethylpyridine (77.0 μL, 585 μmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (44.0 mg, 214 μmol) was added and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (158 mg, 1.07 mmol) and trifluoroacetic acid (74.7 μL, 975 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.

Since Reference Example 2 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.

Example 3

(1) Synthesis of Phosphorothioate Dimer Wherein 3′-Hydroxy Group is Protected by Anchor

Under an argon atmosphere, in a 10 mL Schlenk tube were placed HO-dT-SUC-TOB (100 mg, 81 μmol) and MeOC(O)-TOB (100 mg, 106 μmol), and they were dissolved in dehydrated dichloromethane (4.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (46.6 mg, 242 μmol) and dT-CE phosphoramidite (181 mg, 242 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2,2,2-trifluoroethanol (86.6 μL, 1.21 mmol), and the mixture was stirred at room temperature for 15 min. Furthermore, a mixture of acetic acid (13.9 μL, 242 μmol) and 2,4,6-trimethylpyridine (31.9 μL, 242 μmol), and DDTT (54.7 mg, 267 μmol) were added, and the mixture was stirred at room temperature for 30 min. After stirring, 5-methoxyindole (238 mg, 1.62 mmol) and trifluoroacetic acid (55.7 μL, 727 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added acetonitrile (10 mL), and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO while washing with acetonitrile (20 mL) and dried under reduced pressure to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (222 mg, yield 96%).

(2) Synthesis of Phosphorothioate Trimer Wherein 3′-Hydroxy Group is Protected by Anchor

An operation similar to that in the above-mentioned (1) was further repeated once to give a trimer (N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl3,4,5-tris(octadecyloxy)benzyl succinate) (251 mg, yield 89%).

(1) Preparation of Reaction Solution

As shown in the below-mentioned Reference Examples 1 to 11, the reaction solution was prepared.

(2) Preparation and Analysis of Test Solution

In the same manner as in Experimental Example 2, the prepared test solution was measured by mass spectrometry, and the amount of the +1 monomer product and the amount of the base-part deprotected product were calculated. The results are shown in Table 3.

TABLE 3
quencherneutralized saltamountamount (%) of
amountamount(%) of +1base-part
reaction(molar(molarmonomerdeprotected
solutionkindequivalents)kindequivalents)productproduct
Referencemethanol10nonenone0.54
Example 1
Referencemethanol5acetic acid +20.330.34
Example 22,4,6-trimethylpyridine
Referencenonenoneacetic acid + pyridine10 1.02
Example 3
Referencenonenoneacetic acid +21.480.21
Example 4N-methylimidazole
Referencemethanol10acetic acid +20.082.53
Example 5N-methylimidazole
Referencet-butanol10nonenone0.15
Example 6
Referencet-butanol10acetic acid +20.11
Example 72,4,6-trimethylpyridine
Reference2-propanol5acetic acid +20.06
Example 82,4,6-trimethylpyridine
Reference2,2,2-10acetic acid +2
Example 9trifluoroethanol2,4,6-trimethylpyridine
Reference2,2,2-5nonenone
Example 10trifluoroethanol
Referencet-butanol5nonenone
Example 11
(note)
“amount of quencher” = “molar equivalents relative to phosphoramidite monomer”
“amount of neutralized salt” = “molar equivalents relative to phosphoramidite monomer”
“—” = “below detection limit”

As shown in Table 3, when methanol, t-butanol, 2,2,2-trifluoroethanol or 2-propanol was used as a quencher, production of a +1 monomer product was confirmed to have been suppressed. Furthermore, when t-butanol, 2,2,2-trifluoroethanol or 2-propanol was used, production of a base-part deprotected product was also confirmed to have been suppressed. In addition, when a neutralized salt of acetic acid and 2,4,6-trimethylpyridine was copresent together with alcohol confirmed to have a production suppressive effect on a +1 monomer product and a base-part deprotected product, production of a byproduct was confirmed to have been suppressed.

(1) Synthesis of Dimer

Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (618 mg, 499 μmol) and Ac-TOB (618 mg, 646 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.11 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added a mixture of acetic acid (857 μL, 15.0 mmol) and pyridine (1.82 mL, 22.4 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (338 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (344 μL, 4.49 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (653 μL, 4.94 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (753 mg, yield 94%).

(2) Synthesis of Trimer

Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (753 mg, 468 μmol) obtained in the above-mentioned (1), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (270 mg, 1.40 mmol) and dA-CE phosphoramidite (1.20 g, 1.40 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added a mixture of acetic acid (402 μL, 7.01 mmol) and pyridine (567 μL, 7.01 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (317 mg, 1.54 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.38 g, 9.35 mmol) and trifluoroacetic acid (322 μL, 4.21 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.

Since Reference Example 3 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.

Example 4

[Figure (not displayed)]

Under an argon atmosphere, in a 10 mL Schlenk tube were placed HO-dT-SUC-TOB (100 mg, 81 μmol) and MeOC(O)-TOB (100 mg, 106 μmol), and they were dissolved in dehydrated dichloromethane (5.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (46.6 mg, 242 μmol) and dT-CE phosphoramidite (181 mg, 242 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2,2,2-trifluoroethanol (86.6 μL, 1.21 mmol), and the mixture was stirred at room temperature for 15 min. Furthermore, DPTT (28.0 mg, 73.0 μmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, 5-methoxyindole (234 mg, 1.62 mmol) and trifluoroacetic acid (55.7 μL, 727 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. The reaction solution was neutralized with 2,4,6-trimethylpyridine (105 μL, 800 μmol), triethyl phosphite (8.6 μL, 73.0 μmol) was added and the mixture was stirred at room temperature for 15 min. After stirring, acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (222 mg, yield 88%).

(1) Preparation of Reaction Solution

As shown in the below-mentioned Reference Examples 12 to 15, a reaction solution was prepared.

(2) Preparation of Test Solution

To the reaction solutions obtained in Reference Examples 12 to 15 were added a quencher and a neutralized salt in the kind and amount shown in Table 4. The reaction solution (50 μL) was dispensed to a 1.5 mL vial, DDTT (2.5 mg, 12 μmol) was added and the mixture was shaken for 30 sec. The mixture was diluted with tetrahydrofuran (450 μL), DBU (20 μL) was added and the mixture was stirred for 30 sec to give a test solution.

(3) Analysis

The obtained test solution was measured by mass spectrometry using LC-TOF MS (Agilent6230). The amount of the unreacted material was calculated by the following formula based on the abundance (m/z=2) of each compound observed (object compound and unreacted material).
amount(%) of unreacted material=(abundance of unreacted material/abundance of object compound)×100

As used herein, the unreacted material refers to a phosphoramidite monomer used for preparing the reaction solution.

TABLE 4
quencherneutralized saltamount (%)
amountamountof
(molar(molarunreacted
reaction solutionkindequivalents)kindequivalents)material
Reference Example 13t-butanol10nonenone8.35
Reference Example 14t-butanol10acetic acid +2
2,4,6-
trimethylpyridine
Reference Example 122,2,2-5nonenone7.76
trifluoroethanol
Reference Example 152,2,2-10acetic acid +2
trifluoroethanol2,4,6-
trimethylpyridine
(note)
“amount of quencher” = “molar equivalents relative to phosphoramidite monomer”
“amount of neutralized salt” = “molar equivalents relative to phosphoramidite monomer”
“—” = “below detection limit”

As shown in Table 4, when t-butanol or 2,2,2-trifluoroethanol and a neutralized salt of acetic acid and 2,4,6-trimethylpyridine were copresent, condensation reaction was confirmed to have proceeded effectively without leaving an unreacted material during condensation reaction.

(1) Synthesis of Dimer

Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 500 μmol) and Ac-TOB (770 mg, 807 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added a mixture of acetic acid (172 μL, 3.00 mmol) and N-methylimidazole (178 μL, 2.25 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (339 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (574 μL, 7.50 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, N-methylimidazole (653 μL, 8.25 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (792 mg, 98%).

(2) Synthesis of Trimer

Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (792 mg, 492 μmol) obtained in the above-mentioned (1), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (284 mg, 1.48 mmol) and dA-CE phosphoramidite (1.27 g, 1.48 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added a mixture of acetic acid (169 μL, 2.95 mmol) and N-methylimidazole (175 μL, 2.21 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (333 mg, 1.62 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.45 g, 9.83 mmol) and trifluoroacetic acid (565 μL, 7.37 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.

Since Reference Example 4 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.

Example 5

[Figure (not displayed)]

Under an argon atmosphere, in a 10 mL Schlenk tube were placed HO-dT-SUC-TOB (80.3 mg, 65.0 μmol) and MeOC(O)-TOB (99.0 mg, 105 μmol) and they were dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.4 mg, 195 μmol) and dT-CE phosphoramidite (145 mg, 195 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2,2,2-trifluoroethanol (69.5 μmL, 973 μmol), and the mixture was stirred at room temperature for 15 min. Furthermore, PADS (177 mg, 584 μmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, 5-methoxyindole (191 mg, 1.30 mmol) and trifluoroacetic acid (44.7 μL, 584 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. The reaction solution was neutralized with 2,4,6-trimethylpyridine (84.6 μL, 642 μml). Acetonitrile (10 mL) was added, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (73.3 mg, 85%).

TOF/MS: 1557.0116

The phosphorothioate 10-mer obtained in the below-mentioned Reference Examples 16-20 were analyzed by HPLC and the purity of the obtained 10-mer (area %) was calculated. The results of the purity (area %) of quencher, neutralized salt and 10-mer used are shown in Table 5.

TABLE 5
quencherneutralized salt
amountamountpurity
(molar(molar(area %)
10-merkindequivalents)kindequivalents)of 10-mer
Reference Example 16methanol10nonenone82.6
Reference Example 17methanol10acetic acid +283.4
2,4,6-trimethylpyridine
Reference Example 18nonenoneacetic acid +1080.0
pyridine
Reference Example 192,2,2-10acetic acid +293.6
trifluoro-2,4,6-trimethylpyridine
ethanol
Reference Example 20t-butanol10acetic acid +287.0
2,4,6-trimethylpyridine
(note)
“amount of quencher” = “molar equivalents relative to phosphoramidite monomer”
“amount of neutralized salt” = “molar equivalents relative to phosphoramidite monomer”

As shown in Table 5, when 2,2,2-trifluoroethanol or t-butanol, and a neutralized salt of acetic acid and 2,4,6-trimethylpyridine was used, the purity of 10-mer was confirmed to be high.

(1) Synthesis of Dimer

Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 500 μmol) and Ac-TOB (770 mg, 807 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added methanol (608 μL, 15.0 mmol), a mixture of acetic acid (172 μL, 3.00 mmol) and N-methylimidazole (356 μL, 4.50 mmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (339 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (689 μL, 9.00 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, N-methylimidazole (784 μL, 9.90 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (779 mg, yield 97%).

(2) Synthesis of Trimer

Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (779 mg, 483 μmol) obtained in the above-mentioned (1), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (279 mg, 1.45 mmol) and dA-CE phosphoramidite (1.24 g, 1.45 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added methanol (588 μL, 14.5 mmol), a mixture of acetic acid (166 μL, 2.90 mmol) and N-methylimidazole (344 μL, 4.35 mmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (328 mg, 1.60 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.42 g, 9.67 mmol) and trifluoroacetic acid (666 μL, 8.70 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.

Since Reference Example 5 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.

Example 6

[Figure (not displayed)]

Under an argon atmosphere, in a 10 mL Schlenk tube were placed deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)cyclohexyl-1-methyl]succinate (500 mg, 0.402 mmol) and methyl 3,4,5-tris(octadecyloxy)cyclohexyl-1-carboxylate (500 mg, 0.528 mmol), and they were dissolved in dehydrated dichloromethane (4.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (116 mg, 0.603 mmol) and dT-CE phosphoramidite (449 mg, 0.603 mmol) prepared by dissolving in dehydrated acetonitrile (0.4 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2,2,2-trifluoroethanol (129 μL, 1.81 mmol), and the mixture was stirred at room temperature for 15 min. Furthermore, DPTT (54.1 mg, 0.141 mmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, 5-methoxyindole (1.18 g, 8.04 mmol) and trifluoroacetic acid (115 μL, 1.51 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. The reaction solution was neutralized with 2,4,6-trimethylpyridine (218 μL, 1.66 mmol), acetonitrile (20 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)cyclohexyl-1-methyl]succinate) as a white solid (1.15 g, yield 100%).

(1) Synthesis of Dimer

Under an argon atmosphere, in a 10 mL Schlenk tube were placed HO-dT-SUC-TOB (80.3 mg, 65.0 μmol) and Ac-TOB (100 mg, 105 μmol) and they were dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.4 mg, 195 μmol) and dT-CE phosphoramidite (145 mg, 195 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added t-butanol (186 μL, 1.95 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (44.0 mg, 214 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (94.6 mg, 642 μmol) and trifluoroacetic acid (44.7 μL, 584 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (84.6 μL, 642 μmol) was added, acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (104 mg, yield 100%).

(2) Synthesis of Trimer

Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (104 mg, 65.0 μmol) obtained in the above-mentioned (1) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.3 mg, 194 μmol) and dA-CE phosphoramidite (167 mg, 194 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution. The reaction solution obtained at this time point was used as the reaction solution of Reference Example 13 in the above-mentioned Experimental Example 4.

To the reaction solution obtained as mentioned above was added t-butanol (186 μL, 1.94 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (43.9 mg, 214 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (94.3 mg, 641 μmol) and trifluoroacetic acid (44.6 μL, 583 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution. The reaction solution obtained at this time point was used as the reaction solution of Reference Example 6 in the above-mentioned Experimental Example 3.

Since Reference Example 6 and Reference Example 13 include steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, they are each one embodiment of the present invention.

Example 7

[Figure (not displayed)]

Under an argon atmosphere, in a 10 mL Schlenk tube were placed deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzoylpiperazine]succinate (100 mg, 76.0 μmmol) and methyl 3,4,5-tris(octadecyloxy)cyclohexyl-1-carboxylate (100 mg, 0.106 mmol) and they were dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (43.7 mg, 227 μmop and 2′-OMe-rA(Bz)-CE phosphoramidite (202 mg, 0.227 mmol) prepared by dissolving in dehydrated acetonitrile (0.3 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added morpholine (99.0 μL, 1.14 mmol), and the mixture was stirred at room temperature for 15 min. Furthermore, (2R,8aS)-(+)-(camphorylsulfonyl)oxaziridine (54.7 mg, 0.239 mmol) was added, and the mixture was stirred at room temperature for 1 hr. 5-Methoxyindole (223 mg, 1.52 mmol) and trifluoroacetic acid (34.8 μt, 0.455 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. The reaction solution was neutralized with 2,4,6-trimethylpyridine (65.9 μL, 500 μmol), acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (N6-benzoyl-2′-O-methyl-adenosine-3′-[O-(2-cyanoethyl)]phosphoryl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzoylpiperazine]succinate) as a white solid (214 mg, yield 89%).

(1) Synthesis of Dimer

Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 500 μmol) and Ac-TOB (772 mg, 808 mol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added t-butanol (1.43 mL, 15.0 mmol), a mixture of acetic acid (173 μL, 3.00 mmol) and 2,4,6-trimethylpyridine (594 μL, 4.50 mmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (339 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (689 μL, 8.99 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (1.31 mL, 9.89 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (798 mg, yield 99%).

(2) Synthesis of Trimer

Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (798 mg, 495 μmol) obtained in the above-mentioned (1), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (286 mg, 1.49 mmol) and dA-CE phosphoramidite, (1.27 g, 1.49 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution. The reaction solution obtained at this time point was used as the reaction solution of Reference Example 14 in the above-mentioned Experimental Example 4.

To the reaction solution obtained as mentioned above was added t-butanol (1.42 mL, 14.8 mmol), a mixture of acetic acid (171 μL, 2.97 mmol) and 2,4,6-trimethylpyridine (589 μL, 4.46 mmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (335 mg, 1.63 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.46 g, 9.90 mmol) and trifluoroacetic acid (569 μL, 7.43 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution. The reaction solution obtained at this time point was used as the reaction solution of Reference Example 7 in the above-mentioned Experimental Example 3.

Since Reference Example 7 and Reference Example 14 include steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, they are each one embodiment of the present invention.

Example 8

[Figure (not displayed)]

Under an argon atmosphere, in a 10 mL Schlenk tube were placed 3,4,5-tris(octadecyloxy)benzyl]succinate (100 mg, 81.0 μmmol) and methyl 3,4,5-tris(octadecyloxy)phenyl-1-carboxylate (100 mg, 0.106 mmol), and they were dissolved in dehydrated dichloromethane (5.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (46.6 mg, 242 μmol) and dG-CE phosphoramidite (204 mg, 0.242 mmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added morpholine (106 μL, 1.21 mmol), and the mixture was stirred at room temperature for 15 min. Furthermore, a mixed solution of iodine (64.6 mg, 0.254 mmol), 2,4,6-trimethylpyridine (83.8 μL, 0.636 mmol) and water (6.60 μL, 0.364 mmol) was added, and the mixture was stirred at room temperature for 1 hr. 5-Methoxyindole (238 mg, 1.62 mmol) and trifluoroacetic acid (55.7 μL, 0.727 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. The reaction solution was neutralized with 2,4,6-trimethylpyridine (105 μL, 800 μmol), acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give dinucleotide (N2-isobutyryl-deoxyadenosine-3′-[O-(2-cyanoethyl)]phosphoryl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (209 mg, yield 88%).

(1) Synthesis of Dimer

Under an argon atmosphere, in a 10 mL Schlenk tube was placed HO-dT-SUC-TOB (80.3 g, 65.0 μmol) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.4 mg, 195 μmol) and dT-CE phosphoramidite (145 mg, 195 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2-propanol (74.8 μL, 974 μmol), a mixture of acetic acid (22.2 μL, 390 μmol) and 2,4,6-trimethylpyridine (77.1 μL, 585 μmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (44.0 mg, 214 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (94.6 mg, 643 μmol) and trifluoroacetic acid (44.7 μL, 584 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (84.6 μL, 643 μmol) was added, acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (101 mg, yield 98%).

(2) Synthesis of Trimer

Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (101 mg, 63.0 μmol) obtained in the above-mentioned (1) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (36.3 mg, 189 μmol) and dA-CE phosphoramidite (162 mg, 189 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2-propanol (72.5 μL, 944 μmol), a mixture of acetic acid (10.8 μL, 189 μmol) and 2,4,6-trimethylpyridine (37.3 μL, 283 μmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (42.6 mg, 208 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (91.7 mg, 623 μmol) and trifluoroacetic acid (43.4 μL, 566 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.

Since Reference Example 8 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.

Example 9

(1) Synthesis of Dimer

Under an argon atmosphere, in a 300 mL four-necked flask was placed HO-dT-SUC-TOB (180 mg, 64.9 μmol) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.4 mg, 195 μmol) and dT-CE phosphoramidite (145 mg, 195 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2,2,2-trifluoroethanol (140 μL, 1.95 mmol), a mixture of acetic acid (22.3 μL, 390 μmol) and 2,4,6-trimethylpyridine (77.0 μL, 585 μmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (44.0 mg, 215 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (189 mg, 1.17 mmol) and trifluoroacetic acid (89.6 μL, 1.17 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (170 μL, 1.29 mmol) was added, acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (104 mg, yield 99%).

(2) Synthesis of Trimer

Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (101 mg, 62.5 μmol) obtained in the above-mentioned (1) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (36.1 mg, 188 μmol) and dA-CE phosphoramidite (161 mg, 188 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution. The reaction solution obtained at this time point was used as the reaction solution of Reference Example 15 in the above-mentioned Experimental Example 4.

To the reaction solution obtained as mentioned above was added 2,2,2-trifluoroethanol (134 μL, 1.88 mmol), a mixture of acetic acid (21.5 μL, 376 μmol) and 2,4,6-trimethylpyridine (74.3 μL, 564 μmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (42.5 mg, 207 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (147 mg, 1.00 mmol) and trifluoroacetic acid (72.0 μL, 910 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution. The reaction solution obtained at this time point was used as the reaction solution of Reference Example 9 in the above-mentioned Experimental Example 3.

Since Reference Example 9 and Reference Example 15 include steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, they are each one embodiment of the present invention.

Example 10

Under an argon atmosphere, in a 10 mL Schlenk tube was placed HO-dA-SUC-TOB (182 mg, 60.5 μmol) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (35.0 mg, 182 μmol) and dT-CE phosphoramidite (135 mg, 182 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2,2,2-trifluoroethanol (65.3 μL, 910 μmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (41.1 mg, 200 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (88.4 mg, 600 μmol) and trifluoroacetic acid (41.8 μL, 546 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.

Example 11

Under an argon atmosphere, in a 10 mL Schlenk tube was placed HO-dA-SUC-TOB (182 mg, 60.5 μmol) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (35.0 mg, 182 μmol) and dT-CE phosphoramidite (135 mg, 182 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added t-butanol (87.0 μL, 910 μmol), and the mixture was stirred at room temperature for min. After stirring, DDTT (41.1 mg, 200 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (88.4 mg, 600 μmol) and trifluoroacetic acid (41.8 μL, 546 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.

Example 12

(1) Synthesis of Dimer

Under an argon atmosphere, in a 10 mL Schlenk tube were placed HO-dT-SUC-TOB (80.3 mg, 65.0 μmol) and Ac-TOB (100 mg, 105 μmol) and they were dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.4 mg, 195 μmol) and dT-CE phosphoramidite (145 mg, 195 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2,2,2-trifluoroethanol (69.6 μL, 973 μmol), DDTT (44.0 mg, 214 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (94.6 mg, 642 μmol) and trifluoroacetic acid (44.7 μL, 584 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (84.6 μL, 642 μmol) was added, acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (98.3 mg, yield 94%).

(2) Synthesis of Trimer

Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (98.3 mg, 61.0 μmol) obtained in the above-mentioned (1) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (35.2 mg, 183 μmol) and dA-CE phosphoramidite (157 mg, 183 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.

Since Reference Example 12 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.

Example 16

(1) Synthesis of Phosphorothioate Dimer Wherein 3′-Hydroxy Group is Protected by Anchor

Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 500 mol) and Ac-TOB (619 mg, 648 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added methanol (608 μL, 15.0 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (340 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (345 μL, 4.50 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (654 μL, 4.95 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (762 mg, yield 95%).

(2) Synthesis of Phosphorothioate 9-Mer Wherein 3′-Hydroxy Group is Protected by Anchor

An operation similar to that in the above-mentioned (1) was further repeated 7 times to give a 9-mer (N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) (2.03 g).

(3) Synthesis of Phosphorothioate 10-Mer Wherein 3′-Hydroxy Group is Protected by Anchor and 5′-Hydroxy Group is Protected by DMTr Group

Under an argon atmosphere, in a 300 mL four-necked flask was placed the 9-mer (2.03 g) of the above-mentioned (2), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (228 mg, 1.19 mmol) and dG-CE phosphoramidite (1.00 g, 1.19 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. DDTT (338 mg, 1.64 mmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, acetonitrile (150 mL) was added to the reaction solution and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a 10-mer (5′-O-(4,4′-dimethoxytrityl)-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) as a white solid (2.28 g).

(4) Deprotection

A mixture of the 10-mer (20 mg) obtained in the above-mentioned (3) and 30 wt % aqueous ammonia (5.00 mL) was placed in an autoclave, heated at 55° C. for 16 hr and cooled to room temperature. Insoluble material in the reaction solution was removed by a syringe filter (Whatman 25 mm GD/X PVDF 0.45 μm), and the filtrate was freeze-dried to give the object deoxyguanidyl-[3′→5′]-deoxyadenylyl-[3′→5′]-deoxycytidinyl-[3′→5′]-deoxyadenylyl-[3′→5′ ]-deoxythymidinyl-[3′→5′]-deoxyguanidyl-[3′→5′ ]-deoxycytidinyl-[3′→5′ ]-deoxyadenylyl-[3′→5′]-deoxythymidinyl-[3′→5′ ]-deoxythymidine.

HPLC (WATERS XBridge™ C18 2.5 μm 4.6×75 mm column, flow rate 1.0 mL/min, 8 mM TEA+100 mM HFIP, MeOH, gradient: 0-10 min; 5 to 60%, λ=260 nm):Rt=6.61, 6.75 min (41.3+41.3%);

TOF/MS: 3471.489

Since Reference Example 16 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.

Example 17

(1) Synthesis of Phosphorothioate Dimer Wherein 3′-Hydroxy Group is Protected by Anchor

Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 500 μmol) and Ac-TOB (619 mg, 648 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added methanol (608 μL, 15.0 mmol), and the mixture was stirred at room temperature for 15 min. Thereafter, a separately prepared mixture of acetic acid (172 μL, 3.00 mmol) and 2,4,6-trimethylpyridine (595 μL, 4.50 mmol) was added, DDTT (339 mg, 1.65 mmol) was further added and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (689 μL, 9.00 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. The mixture was neutralized with 2,4,6-trimethylpyridine (654 μL, 4.95 mmol), acetonitrile (150 mL) was added, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (765 mg, yield 95%).

(2) Synthesis of Phosphorothioate 9-Mer Wherein 3′-Hydroxy Group is Protected by Anchor

An operation similar to that in the above-mentioned (1) was further repeated 7 times to give a 9-mer (N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[0-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) (2.18 g).

(3) Synthesis of Phosphorothioate 10-Mer Wherein 3′-Hydroxy Group is Protected by Anchor and 5′-Hydroxy Group is Protected by DMTr Group

Under an argon atmosphere, in a 300 mL four-necked flask was placed the 9-mer (2.18 g) obtained in the above-mentioned (2), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (272 mg, 1.42 mmol) and dG-CE phosphoramidite (1.19 g, 1.42 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. DDTT (320 mg, 1.56 mmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, acetonitrile (150 mL) was added to the reaction solution and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a 10-mer (5′-O-(4,4′-dimethoxytrityl)-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl3,4,5-tris(octadecyloxy)benzyl succinate) as a white solid (2.39 g).

(4) Deprotection

A mixture of 10-mer (20 mg) obtained in the above-mentioned (3) and 30 wt % aqueous ammonia (5.00 mL) was placed in an autoclave, heated at 55° C. for 16 hr and cooled to room temperature. Insoluble material in the reaction solution was removed by a syringe filter (Whatman 25 mm GD/X PVDF 0.45 μm), and the filtrate was freeze-dried to give the object deoxyguanidyl-[3′→5′]-deoxyadenylyl-[3′→5′]-deoxycytidinyl-[3′→5′ ]-deoxyadenylyl-[3′→5′ ]-deoxythymidinyl-[3′→5′ ]-deoxyguanidyl-[3′→5′]-deoxycytidinyl-[3′→5′]-deoxyadenylyl-[3′→5′]-deoxythymidinyl-[3′→5′ ]-deoxythymidine.

HPLC (WATERS XBridge™ C18 2.5 μm 4.6×75 mm column, flow rate 1.0 mL/min, 8 mM TEA+100 mM HFIP, MeOH, gradient: 0-10 min; 5 to 60%, λ=260 nm):Rt=7.06, 7.19 min (41.1+42.3%);

TOF/MS: 3471.49

Since Reference Example 17 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.

Example 18

(1) Synthesis of Phosphorothioate Dimer Wherein 3′-Hydroxy Group is Protected by Anchor

Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (617.5 mg, 499 μmol) and Ac-TOB (619 mg, 648 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added a separately prepared mixture of acetic acid (857 μL, 15.0 mmol) and dehydrated pyridine (1.82 mL, 22.5 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (338 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (345 μL, 4.50 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (653 μL, 4.94 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (753 mg, yield 94%).

(2) Synthesis of Phosphorothioate 9-Mer Wherein 3′-Hydroxy Group is Protected by Anchor

An operation similar to that in the above-mentioned (1) was further repeated 7 times to give a 9-mer (N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[0-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) (1.41 g).

(3) Synthesis of Phosphorothioate 10-Mer Wherein 3′-Hydroxy Group is Protected by Anchor and 5′-Hydroxy Group is Protected by DMTr Group

Under an argon atmosphere, in a 300 mL four-necked flask was placed the 9-mer (1.41 g) obtained in the above-mentioned (2), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (159 mg, 829 μmol) and dG-CE phosphoramidite (696 mg, 829 μmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. DDTT (187 mg, 912 μmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, acetonitrile (150 mL) was added to the reaction solution and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a 10-mer (5′-O-(4,4′-dimethoxytrityl)-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[0-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) as a white solid (1.51 g).

(4) Deprotection

A mixture of the 10-mer (20 mg) obtained in the above-mentioned (3) and 30 wt % aqueous ammonia (5.00 mL) was placed in an autoclave, heated at 55° C. for 16 hr and cooled to room temperature. Insoluble material in the reaction solution was removed by a syringe filter (Whatman 25 mm GD/X PVDF 0.45 μm), and the filtrate was freeze-dried to give the object deoxyguanidyl-[3′→5′]-deoxyadenylyl-[3′→5′]-deoxycytidinyl-[3′→5′]-deoxyadenylyl-[3′→5′]-deoxythymidinyl-[3′→5′]-deoxyguanidyl-[3′→5′]-deoxycytidinyl-[3′→5′]-deoxyadenylyl-[3′→5′ ]-deoxythymidinyl-[3′→5′ ]-deoxythymidine.

HPLC (WATERS XBridge™ C18 2.5 μm 4.6×75 mm column, flow rate 1.0 mL/min, 8 mM TEA+100 mM HFIP, MeOH, gradient: 0-10 min; 5 to 60%, λ=260 nm):Rt=7.32, 7.47 min (40.3 area %+39.7 area %); TOF/MS: 3471.493

Since Reference Example 18 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.

Example 19

(1) Synthesis of Phosphorothioate Dimer Wherein 3′-Hydroxy Group is Protected by Anchor

Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 500 μmol) and Ac-TOB (619 mg, 648 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added a mixture of 2,2,2-trifluoroethanol (1.09 mL, 15.0 mmol), and the mixture was stirred at room temperature for 15 min. Thereafter, a separately prepared mixture of acetic acid (172 μL, 3.00 mmol) and 2,4,6-trimethylpyridine (595 μL, 4.50 mmol) was added, DDTT (339 mg, 1.65 mmol) was further added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (345 μL, 4.50 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (653 μL, 4.94 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (788 mg, yield 98%).

(2) Synthesis of Phosphorothioate 9-Mer Wherein 3′-Hydroxy Group is Protected by Anchor

An operation similar to that in the above-mentioned (1) was further repeated 7 times to give a 9-mer (N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[0-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) (1.97 g).

(3) Synthesis of Phosphorothioate 10-Mer Wherein 3′-Hydroxy Group is Protected by Anchor and 5′-Hydroxy Group is Protected by DMTr Group

Under an argon atmosphere, in a 300 mL four-necked flask was placed the compound (1.97 g) of the above-mentioned (2), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (222 mg, 1.16 mmol) and dG-CE phosphoramidite (972 mg, 1.16 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. DDTT (261 mg, 1.27 mmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, acetonitrile (150 mL) was added to the reaction solution and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a 10-mer (5′-O-(4,4′-dimethoxytrityl)-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[0-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) as a white solid (2.21 g).

(4) Deprotection

A mixture of the 10-mer (20 mg) obtained in the above-mentioned (3) and 30 wt % aqueous ammonia (5.00 mL) was placed in an autoclave, heated at 55° C. for 16 hr and cooled to room temperature. Insoluble material in the reaction solution was removed by a syringe filter (Whatman 25 mm GD/X PVDF 0.45 μm), and the filtrate was freeze-dried to give the object deoxyguanidyl-[3′→5′]-deoxyadenylyl-[3′→5′]-deoxycytidinyl-[3′→5′ ]-deoxyadenylyl-[3′→5′ ]-deoxythymidinyl-[3′→5′ ]-deoxyguanidyl-[3′→5′ ]-deoxycytidinyl-[3′→5′ ]-deoxyadenylyl-[3′→5′ ]-deoxythymidinyl-[3′→5′]-deoxythymidine.

HPLC (WATERS XBridge™ C18 2.5 μm 4.6×75 mm column, flow rate 1.0 mL/min, 8 mM TEA+100 mM HFIP, MeOH, gradient: 0-10 min; 5 to 60%, λ=260 nm):Rt=7.36, 7.48 min (48.8 area %+44.8 area %); TOF/MS: 3471.495

Since Reference Example 19 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.

Example 20

(1) Synthesis of Phosphorothioate Dimer Wherein 3′-Hydroxy Group is Protected by Anchor

Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 500 μmol) and Ac-TOB (619 mg, 648 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added t-butanol (1.43 mL, 15.0 mmol), and the mixture was stirred at room temperature for 15 min. Thereafter, a separately prepared mixture of acetic acid (173 μL, 3.00 mmol) and 2,4,6-trimethylpyridine (594 μL, 4.50 mmol) was added, DDTT (339 mg, 1.65 mmol) was further added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (689 L, 8.99 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (1.31 mL, 9.89 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (798 mg, yield 99%).

(2) Synthesis of Phosphorothioate 9-Mer Wherein 3′-Hydroxy Group is Protected by Anchor

An operation similar to that in the above-mentioned (1) was further repeated 7 times to give a 9-mer (N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[0-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) (1.93 g).

(3) Synthesis of Phosphorothioate 10-Mer Wherein 3′-Hydroxy Group is Protected by Anchor and 5′-Hydroxy Group is Protected by DMTr Group

Under an argon atmosphere, in a 300 mL four-necked flask was placed the 9-mer (1.93 g) obtained in the above-mentioned (2), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (218 mg, 1.13 mmol) and dG-CE phosphoramidite (950 mg, 1.13 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. DDTT (256 mg, 1.23 mmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, acetonitrile (150 mL) was added to the reaction solution and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give 10-mer (5′-O-(4,4′-dimethoxytrityl)-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl3,4,5-tris(octadecyloxy)benzyl succinate) as a white solid (2.14 g).

(4) Deprotection

A mixture of the 10-mer (20 mg) obtained in the above-mentioned (3) and 30 wt % aqueous ammonia (5.00 mL) was placed in an autoclave, heated at 55° C. for 16 hr and cooled to room temperature. Insoluble material in the reaction solution was removed by a syringe filter (Whatman 25 mm GD/X PVDF 0.45 μm), and the filtrate was freeze-dried to give the object deoxyguanidyl-[3′→5′]-deoxyadenylyl-[3′→5′]-deoxycytidinyl-[3′→5′′]-deoxyadenylyl-[3′→5′]-deoxythymidinyl-[3′→5′ ]-deoxyguanidyl-[3′→5′]-deoxycytidinyl-[3′→5′]-deoxyadenylyl-[3′→5′]-deoxythymidinyl-[3′→5′]-deoxythymidine.

HPLC (WATERS XBridge™ C18 2.5 μm 4.6×75 mm column, flow rate 1.0 mL/min, 8 mM TEA+100 mM HFIP, MeOH, gradient: 0-10 min; 5 to 60%, λ=260 nm):Rt=6.95, 7.08 min (44.3 area %+42.7 area %); TOF/MS: 3471.493

Since Reference Example 20 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.

+ Open protocol
+ Expand
2

Optimized Monoclonal Antibody Purification

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

A. Materials and Methods

1. Screening of Precipitation Recovery at 4° C.

To measure monoclonal antibody purity and yield, the monoclonal antibody-containing supernatant was diluted 1:5 with HQ-H2O before 96% (v/v) ethanol was added to a final concentration of 33% (v/v). The solution was incubated overnight in the cold room (4° C.) under slight stirring (400 rpm). Aliquots of 10 ml were collected and filtered using either a planar filter (Millex GV, Sartorius, Bedford, USA) or a depth filter (GD/X, Whatman, Little Chalfont, UK). The planar filter uses a PVDF Durapore membrane with a cut-off of 0.22 μm while the depth filter uses four layers of different filtration material (layer 1+2: glass microfiber 10 to 1 μm; layer 3: glass microfiber prefilter 0.7 μm; layer 4: PDVDF 0.2 μm). Following a factorial design plan, the precipitates were then washed or not washed, dissolved immediately or after a delay in histidine buffer (20 mM histidine, 100 mM NaCl, pH 6.0), and the flow direction for dissolving of the precipitate was identical or opposing to the flow direction of precipitate collection. All dissolved precipitates were analyzed by analytical protein A chromatography. The purity was calculated as area of IgG peak divided by the sum of the areas of the flow-through and the IgG peak.

2. Evaluation of the Purification Strategies for Monoclonal Antibody-containing Supernatant A and B.

The respective supernatant was transferred into the reactor vessels of an Integrity 10 (Thermo Fisher Scientific, Rochford, UK) and equilibrated at 20° C. (˜room temperature). For all experiments, the starting volumes were selected so that the last precipitation step started with 10 ml of adjusted cell culture supernatant. Three different methodologies were used: (1) initial precipitation of the impurities such as DNA and protein impurities; (2) selective precipitation of IgG; and, (3) precipitation out of clarified cell culture supernatant or only diluted clarified cell culture supernatant. For the initial precipitation of impurities, two or three precipitation steps may be required. The first precipitation steps (1 and/or 2) aim at the removal of the impurities by precipitation. In this case, the precipitates are discarded and the remaining precipitation supernatant is used to proceed. The precipitate was only collected using depth filters (GD/X, Whatman) after the final step. It is then washed using a tempered ethanol solution of respective concentration and dissolved in histidine buffer (20 mM histidine, 100 mM NaCl, pH 6.0). For the selective precipitation of IgG, only one precipitation step may be required. The precipitate may then be collected, washed and dissolved. For the precipitation of IgG from the clarified cell culture supernatant and diluted (1:4 with HQ-H2O) cell culture supernatant no adjustment besides temperature control is required. Again the precipitates are collected, washed and dissolved as described before. Adjustments were performed as follows: (a) adjustment of pH using HCl or NaOH; (b) adjustment of the conductivity using either saturated NaCl or CaCl2; (c) control and if required further adjustment of pH; (d) simultaneous adjustment of temperature and ethanol addition. The ethanol was pre-cooled at −10° C. and added at 2-4 μl/min. After addition of ethanol the suspension was incubated for at least two hours. For each precipitation step, the required adjustments were performed in this given sequence. All handling was performed at room temperature unless otherwise indicated. Syringes and filters were also stored at room temperature unless otherwise indicated. The dissolved precipitates were analysed for IgG concentration (analytical protein A chromatography), protein impurity concentration (Bradford assay, excluding IgG) and DNA concentration (Picogreen assay). Additionally the dissolved precipitates were analysed by SEC. Screening of precipitation recovery at −10° C. Aliquots of 5 ml of cell culture supernatant of monoclonal antibody A were transferred into the reactor vessels of the Integrity 10 (Thermo Fisher Scientific) and tempered to 4° C. Upon addition of 96% (v/v) ethanol to a final concentration of 40% (v/v) over 30 minutes while the temperature was linearly decreased to −10° C. The suspension was then mixed at 400 rpm or 1000 rpm and after two hours collected by filtration using a depth filter (GD/X, Whatman). The filters and syringes used were tempered at room temperature, 4° C. in the laboratory fridge or ˜−20° C. in the laboratory freezer. The precipitates were washed using a tempered ethanol solution (−10° C., 40% (v/v) ethanol) and then dissolved in 10 ml histidine buffer (20 mM histidine, 100 mM NaCl, pH 6.0). All handling was performed at room temperature unless otherwise indicated. The precipitation supernatants, the washing solution and the dissolved precipitates were collected and analysed by analytical protein A chromatography. The respective purity was calculated again as area of IgG peak divided by the sum of the areas of the flow-through and the IgG peak. A detailed description of the experimental set-up is provided below. All experiments were performed in triplicates unless otherwise indicated.

3. Elution Profile of Dissolved Precipitate—Recovery and Purity

The same experimental set-up as for the screening of precipitation recovery at −10° C. was used for aliquots of 5 ml of monoclonal antibody-containing cell culture supernatant. The obtained precipitate was not washed. The dissolved precipitate was collected in aliquots of 1 ml and each aliquot analysed by analytical protein A chromatography. The respective purity was calculated again as area of IgG peak divided by the sum of the areas of the flow-through and the IgG peak.

4. Comparison of Different Alcohols for Precipitation

The alcohols used were methanol (Methanol LCMS Chromasolv, Fluka), ethanol (Ethanol 96% Emprove exp, Merck), isopropanol (Isorpopanol LiChrosolv, Merck), acetone (Aceton p.a., Merck) or 1,2-propandiol (Acros Organics). Aliquots of 10 ml of the cell culture supernatant C were transferred into the reactor vessels of an Integrity 10 (Thermo Fisher Scientific) and tempered to 4° C. During addition of the respective alcohol to a final concentration of either 10% (v/v) or 30% (v/v) over 1 h the temperature was linearly decreased to either 0° C. or −5° C. No precipitation was observed for acetone or 1,2-propandiol. The precipitates were collected by depth filtration (GD/X, Whatman) and dissolved without prior washing using 10 ml of histidine buffer (20 mM histidine, 100 mM NaCl, pH 6.0). All experiments were performed in triplicates. The concentration of IgG in the precipitation supernatant and the analysis of the composition of the dissolved precipitates were performed using SEC (Bio-SEC3, Agilent).

B. Isolation of Proteins

1. Influence of Filter Type and Conditions on Recovery and Purity after Precipitation at 4° C.

Additional parameters of precipitate collection and dissolution were also evaluated (Table 1). All experiments were performed with the clarified culture monoclonal antibody-containing supernatant (e.g., supernatant B). The “planar filter” corresponds to the Millex GV 0.22 μm. It uses a PVDF Durapore membrane with a cut-off of 0.22 nm and a filtration area of 3.9 cm2. The “depth filter” corresponds to the GD/X 0.2 μm from Whatman. Its filtration material consists of 4 layers: layer 1+layer 2 consist of glass microfiber with a cut-off of 10 to 1 μm; layer 3 consists of a glass microfiber with a cut-off of 0.7 μm; layer 4 consists of a PVDF membrane with 0.2 μm cut-off. The advantage of the “depth filter” is the easier filterability of the precipitate particles (1-30 μm). Compared to a “planar filter” larger volumes of precipitation suspension can be filtrated before clogging of the membrane is observed. However, dissolution of the collected precipitate is not so trivial. The higher hold-up volume (1 ml or 250 μl with air purge) compared to the hold-up volume of the “planar filter” (100 μl) results in sample dilution and even incomplete recovery. Additionally other post-filtration steps such as washing or drying of the pellet might have an effect on purity and/or yield. Washing of the precipitate using a pure precipitant solution of correct concentration and temperature can help in increasing purity. However, washing puts additional stress on the particle and might result in non-specific wash-out, in particular if the particles are small. The impact of drying is of interest to evaluate if the precipitate could be stored in the syringe filter or if it should be dissolved and collected immediately.

The direction of the flow during dissolution of the pellet may also have an effect on the efficiency of dissolution. Therefore, the pellet was dissolved using the same flow direction as for filtration (“in-flow direction of dissolution”) or a flow direction contrary to the flow for filtration (“against-flow direction of dissolution”). Undissolved particles were retained in the filter using “in-flow direction of dissolution” but washed out and collected together with the dissolved particles using against-flow direction of dissolution. This might result in a decreased purity but also a higher yield. Using the factors given in Table 1 a four-factorial design plan, similar to the design plans described previously, was set up:

TABLE 1
FactorDescriptionLevels
AFilter type“−1” or “planar filter”
“+1 or “depth filter”
BFlow direction for dissolution“−1” or “in-flow direction”
of precipitate+1 or “against-flow direction”
CWashing of the precipitate in“ ”−1” or “wash”
the filter“+1” or “no wash”
DDrying of the precipitate in“−1” or “drying”
the filter“+1” or “no drying”

The clarified cell culture supernatant monoclonal was diluted 1:5 with RO-water and ethanol added to a final concentration of ˜33% (v/v) and incubated the suspension o/n at 4° C. under mild stirring (400 rpm). The taken samples were then processed as given in Table 2. Precipitation yield was low (40-50%) due to the low antibody concentration in the starting material.

TABLE 2
Run #TermABCD
10−1 “planar filter”−1 “in-flow”−1 “wash”−1 “drying”
2A+1 “depth filter”−1 “in-flow”−1 “wash”−1 “drying”
3B−1 “planar filter”+1 “against flow”−1 “wash”−1 “drying”
4C+1 “depth filter”+1 “against flow”−1 “wash”−1 “drying”
5D−1 “planar filter”−1 “in-flow”+1 “no wash”−1 “drying”
6AB+1 “depth filter”−1 “in-flow”+1 “no wash”−1 “drying”
7AC−1 “planar filter”+1 “against flow”+1 “no wash”−1 “drying”
8AD+1 “depth filter”+1 “against flow”+1 “no wash”−1 “drying”
9BC−1 “planar filter”−1 “in-flow”−1 “wash”+1 “no drying”
10BD+1 “depth filter”−1 “in-flow”−1 “wash”+1 “no drying”
11CD−1 “planar filter”+1 “against flow”−1 “wash”+1 “no drying”
12ABC+1 “depth filter”+1 “against flow”−1 “wash”+1 “no drying”
13ABD−1 “planar filter”−1 “in-flow”+1 “no wash”+1 “no drying”
14ACD+1 “depth filter”−1 “in-flow”+1 “no wash”+1 “no drying”
15BCD−1 “planar filter”+1 “against flow”+1 “no wash”+1 “no drying”
16ABCD+1 “depth filter”+1 “against flow”+1 “no wash”+1 “no drying”

The IgG concentration of all samples was analysed by analytical protein A chromatography. Purity was calculated using the relation of the area of the flowthrough peak to the area of the IgG peak as determined by analytical protein A chromatography. This served as a sufficient and fast approximation when only differences within a sample set need to be evaluated. The effect on yield, mass balance and purity were calculated to isolate the main factors and interacting factors with significant impact (Table 3). As shown therein, factor D as well as the interacting factors AB and CD had significant impact on yield and mass balance, while for purity only factor C had a significant impact.

TABLE 3
ForPercent ContributionFor
Model termyieldfor mass balancepurity
A (filter type)1.9%1.8%0.2%
B (flow direction)3.0%3.0%0.8%
C (washing)0.1%0.2%87.5%
D (drying)24.0%24.1%2.3%
AB16.5%16.6%1.5%
AC1.0%1.0%0.9%
AD0.0%0.0%0.1%
BC1.0%1.0%0.0%
BD1.4%1.4%0.1%
CD21.7%21.8%3.3%
ABC0.6%0.5%0.0%
ABD0.8%0.7%0.0%
ACD0.2%0.2%0.0%
BCD0.4%0.4%0.0%
ABCD0.8%0.8%0.0%

The plots of the main factors and selected interacting factors are provided in FIGS. 2 and 3. FIG. 2 illustrates the main and the interacting plots with the mass balance as the response function. On average, the mass balance was about 86%±6%. Considering the rather small scale (10 ml) of the reactions, this is not unexpected. Filter type and flow direction also displayed a slight impact. This correlates well with the minute percent contribution observed (Table 3). Washing of the precipitate had no effect on the mass balance. The most significant impact among the main factors is the factor of “drying of the precipitate in the filter” (“D”). It was determined that storage of the precipitate in the filter over longer periods (=“drying”) may not be advisable as it may lead to a decrease in yield (only 83% as compared to 89%).

The selection of the flow direction for dissolution (B) of the pellet should be selected depending on the filter (A) used (FIG. 2). While the planar filter resulted in only slightly better results when operated against flow, the depth filter is typically only applicable if the pellet is dissolved in flow. This was probably due to the difference in their structure. The planar filter is a symmetric filter while the depth filter is an asymmetric filter. Also, the evaluation of the interacting factors showed that drying of the precipitate when not washed leads to a significant decrease in mass balance (FIG. 2) while for the washed pellet no influence of drying was found. The mass balance for the unwashed pellet is typically higher than that of the washed pellet. As the mass balance and the yield are correlated, the same observations as for the mass balance are also true for the yield (FIG. 3). As mentioned previously, the yield may be low (40-50%) due to the low concentration of the antibody in the diluted cell culture supernatant. The washed, dissolved precipitate has a significantly higher purity (80%±2%) than the unwashed, dissolved precipitate (65%±3%).

Based on this data, a depth filter was tested for filtration as it allows a fast collection of the precipitate. The dilution during dissolution of the pellet due to the washing-out effect of the depth filter is at this scale acceptable. As given before, the depth filter is an asymmetric filter and the same flow direction need to be used throughout the experiment. Despite the loss of material, the effect of washing on purity is significant (˜20% higher purity). A delay in dissolution of the precipitate results in material loss and will therefore also be avoided. Any precipitate recovered should typically be immediately dissolved after washing.

2. Comparison of Different Alcohols for Precipitation

The use of various alcohols to precipitate antibodies from cell culture supernatants was also tested. A list of alcohols tested in these experiments are shown in Table 4.

TABLE 4
AlcoholPropertiesComments
Methanolwater solubleToxic.
melting point: −98° C.Precipitation experiment.
Ethanolwater solublePrecipitation experiment.
melting point: −114° C.
1-propanolwater solubleNot available.
melting point: −127° C.Precipitation experiment
delayed.
Isopropanolwater solublePrecipitation experiment.
melting point: −88° C.
1-Butanolwater soluble to ~11% (v/v)Not miscible with water.
melting point: −89° C.
Isobutanolwater soluble to ~11% (v/v)Not miscible with water.
melting point: −108° C.
Secondarywater soluble ~11% (v/v)Not miscible with water.
butanolmelting point: −114° C.
Tertiarywater solubleToo low melting point.
butanolmelting point: 26° C.
1,2 Propandiolwater solubleNo precipitation observed.
melting point: −68° C.
Acetonewater solubleNo precipitation observed
melting point: −95° C.
Methanol, similar to ethanol, is known to exhibit a low melting point and good water solubility. Ethanol was also tested. 1-propanol may also be suitable but was not tested in these experiments. Butanols are, with the exception of tertiary butanol, are only water soluble to a concentration of about 11% (v/v). Tertiary butanol is water-soluble and has a melting point of only 26° C. (making room temperature handling difficult). Acetone and 1,2-propandiol were also tested (both being water soluble and having relatively low melting points). However, precipitation was not observed using acetone or 1,2-propandiol precipitation under the conditions tested (5-30% (v/v) at 0° C. or −5° C.) (FIG. 27).

FIG. 28 illustrates the solubility curves of monoclonal antibody following precipitation using methanol, ethanol or isopropanol at 0° C. or −5° C. At −5° C., the solubility of monoclonal antibody A was very similar to precipitation at 0° C., although differences in slope and intercept were observed. Three data points are presented for each alcohol at 0° C. The data suggest that the behavior of the different alcohols is, at least at low temperatures, similar and that ethanol could be replaced by either methanol or isopropanol.

3. Optimization of CaCl2 Precipitation

For the monoclonal antibody-containing cell culture supernatants A and C, CaCl2 precipitation with varying concentrations of CaCl2 (5-100 mM) and a subsequent ethanol precipitation (25% (v/v), −10° C.) were tested. As supernatant A has a higher phosphate concentration (˜3.1 mM) than supernatant C (0.2 mM), CaCl2 precipitation was expected to be more pronounced for supernatant A. CaCl2 precipitation was performed at room temperature and pH 8.5 (adjusted using NaOH). The CaCl2 precipitate was removed from the supernatant by centrifugation (4000 g, 15 min) and the pH of the supernatant brought to pH 6.5 using HCl. As shown in FIG. 29, the impurity (HCP) concentration of supernatant A is lower than for supernatant C, which is in agreement with the initial HCP concentration in the supernatants (supernatant A: 54212 ppm; supernatant C: 180099 ppm). FIG. 29 also shows that the CaCl2 concentration in the first step has a significant influence on the final HCP level for supernatant A and a marginal influence for supernatant C. The IgG concentration is almost independent of CaCl2 concentration used in the first step for both of the tested supernatants. A larger standard deviation can be found at lower CaCl2 concentrations for supernatant A.

Higher CaCl2 concentrations were also test (500 mM; FIG. 30). As shown in FIG. 2-11B, impurity (HCP) concentration decreases further for supernatant A to 250 mM CaCl2 while it remains almost constant for supernatant C. The increase of HCP concentration for supernatant A at 500 mM CaCl2 is due to the significant loss of IgG. The optimum CaCl2 concentration for HCP removal was therefore determined to be about 150-250 mM.

As shown below, phosphate concentration may improve isolation of monoclonal antibodies from cell culture supernatant. The phosphate concentration of supernatant A is higher than for supernatant C, which could result in a stronger influence of CaCl2 on HCP removal. The isolation of monoclonal antibody from supernatant C by CaCl2 precipitation and cold ethanol precipitation (CEP) in the presence of elevated phosphate concentrations was therefore tested. Phosphate was added to a final concentration of 4.0 mM to the supernatant, and then CaCl2 precipitation and CEP were carried out. The results were compared with supernatant containing the “original” phosphate concentration of about 0.2 mM phosphate. As shown in FIG. 31, the addition of phosphate did not significantly change the results.

To determine if the effect on HCP reduction is due to CaCl2-phosphate precipitation or the high conductivity caused by CaCl2, the following purification strategies were compared for supernatant A. As the supernatant contains the IgG in a rather complex matrix, the first CaCl2 precipitation and CEP aimed to obtain a relatively pure IgG in a defined matrix (20 mM histidine, 150 mM NaCl, pH 6.0). Therefore, impurities were first removed by addition of CaCl2 to a final concentration of 250 mM. The supernatant was subsequently subjected to CEP using 25% (v/v) ethanol (final concentration) (−10° C., 2 h). The dissolved precipitate was then divided into three parts. To one part, first 300 mM Na2HPO4 was added to a final concentration of 4 mM phosphate followed by 4000 mM CaCl2 to a final concentration of 250 mM CaCl2. The other two parts were mixed with CaCl2 to a final concentration of 250 mM or NaCl to a final concentration of 500 mM. NaCl required a higher concentration to obtain a similar conductivity as for 250 mM CaCl2 (˜50 mS/cm). As shown in FIG. 32, reduction of impurities is more effective when repeating CaCl2 precipitation and CEP (FIG. 32(A)) than by increasing the conductivity of the second CEP step (FIG. 32(C,D)). And when (only) salt is added to increase the conductivity before the second CEP step, NaCl may be more efficient (˜2500 ppm) than CaCl2 (˜4000 ppm). While it is possible to increase conductivity to improve HCP reduction during CEP, it may be more advisable to perform a second CaCl2 precipitation.

4. Isolation of Monoclonal Antibodies from Monoclonal Antibody-containing Cell Culture “Supernatant A”.

Six different purification strategies were compared (Table 5) to determine the optimal conditions for purification of monoclonal antibody from monoclonal antibody-containing supernatant A (“supernatant A” containing monoclonal antibody having a pI˜9.2) from cell-free culture supernatant.

TABLE 5
Predicted solubility
(Jungbauer et al.
PurificationConductivityEthanolTemperatureIgG2010c) ProteinDNA
strategySalt type[mS/cm]pH[%(v/v)][° C.][μg/ml]impurities [μg/ml'[ng/ml]
ACaCl2208.554.023350113
CaCl2208.530−10.0989817
BCaCl2207.554.08545316913
CaCl2207.530−10.09851950
CCaCl2208.504.022756275937
CaCl2206.525−1091460127
87
DNaCl106.525−10.0641330105
EClarified cell culture25−10Not available.
supernatant
F1:4 diluted25−10Not available
The first two purification strategies, “A” and “B” use CaCl2 to precipitate impurities. “A” operates at a high pH and the initial CaCl2 precipitation coupled with ethanol should allowing removal of DNA and also protein impurities in the first step. In the second step the ethanol concentration is increased and the temperature decreased for precipitation of the antibody. In case of “B” the same conditions are applied only the pH is lower, 7.5 instead of 8.5. This should result in less removal of the protein impurities. However, this method might be advantageous as the higher pH in method “A” could result in unwanted modifications of the antibody. Strategy “C” is also similar, though slightly different ethanol concentrations are used. The initial precipitation using CaCl2 is performed at pH 8.5 while the second precipitation is then performed at pH 6.5 As the first precipitation step is a fast reaction (˜10 minutes), the high pH should not lead to antibody modification.

Strategy “D” uses NaCl instead of CaCl2 and aims at keeping the impurities soluble while the antibody is selectively precipitated. The two remaining precipitation strategies, “E” and “F”, are used as reference methods where the clarified cell culture supernatant is used without further adjustments except a 1:4 dilution in case of strategy “F”. For simplicity we analysed only the dissolved precipitates (Table 6).

TABLE 6
ABCDEF
IgG [μg/ml]589 ± 6639 ± 36643 ± 47 569 ± 213591 ± 96136 ± 14
Protein impurities [μg/ml] 51 ± 23 7 ± 16 1 ± 28310 ± 63 324 ± 170276 ± 24
DNA[ng/ml]109 ± 8 99 ± 42120 ± 16140 ± 45220 ± 50 58 ± 42
Yield (overall)68%71% 77%59%59%54%
Purity92%99%100%65%65%33%
DNA [ppm]185155187246372426
The antibody concentration is quite similar for all fractions except the method “F”, which is likely because the supernatant used for method “F” was diluted 1:4. Strategies “B” and “C” are advantageous over the other methods with respect to purity. Compared to “A” this is not unexpected as “A” results in a significant precipitation of protein impurities. The large amount of precipitated protein impurity resulting from strategy D was rather surprising. The amount DNA recovered using strategies “A”, “B”, “C” and “D” was quite similar, which was unexpected considering the predicted solubility. The overall yield of the different purification strategies was about 59-80%. This was found to be due to the temperature difference of the precipitate suspension (−10° C.) and the syringes and filters (room temperature). Additionally, also a rather high stirrer speed was used (1000 rpm) and this might have also affected the recovery. The purity for the capture step was determined by Bradford and analytical protein A chromatography. For strategies “A”, “B”, and “C”, rather high purities were observed. DNA removal may be improved using, for example, additional precipitation steps.

Comparison of the analytical SEC chromatograms of the different purification strategies are given in FIG. 5. As shown therein, strategies “A”, “B” and “C” result in higher purity than strategies “D”, “E”, and “F”. These strategies provided for the removal of high molecular weight impurities, presumably consisting mainly of DNA. Low yields may be improved using depth filters. Strategy “A” may be replaced by strategy “B”, with no significant loss in purity or recovery.

5. Isolation of Monoclonal Antibodies from Monoclonal Antibody-containing Cell Culture “Supernatant B”.

Five different purification strategies were evaluated to determine the optimal conditions for purifying monoclonal antibody from monoclonal antibody-containing cell culture supernatant B (“supernatant B” containing the same antibody as A, but produced using a different cell line; pI˜9.2), as summarized in Table 7.

TABLE 7
Predicted solubility
(Jungbauer et al.
PurificationConductivityEthanolTemperatureIgG2010c) ProteinDNA
strategySalt type[mS/cm]pH[%(v/v)][° C.][μg/ml]impurities [μg/ml'[ng/ml]
GCaCl2206.55−0.525528141694
CaCl2706.510−3.4108701066266
CaCl2706.540−101291842516
HCaCl2287.554.0126321044328
CaCl2287.55−5.3334267113
CaCl2287.540−10357751836
INaCl207.540−10.07944218
JClarified cell culture40−10Not available
supernatant
K1:4 diluted40−10Not available.
Purification from supernatant B could be performed at medium to low pH. The two initial purification steps of the strategy “G” aim at the removal of protein impurities and DNA and the third step is for the final precipitation of antibody. Strategy “H” may be more efficient in removal of protein impurities or DNA but may be less efficient in the precipitation of antibody in the third step. Strategy “I” aims at the selective precipitation of antibody while keeping the protein impurities and the DNA in solution. The overall yield of the different purification strategies is about 25-50% (Table 8).

TABLE 8
GHIJK
IgG [μg/ml]885 ± 1161211 ± 719785 ± 64462 ± 18
Protein impurities [μg/ml] 1 ± 31IgG was not313 ± 33112 ± 78 85 ± 108
DNA [ng/ml]122 ± 23 precipitated 379 ± 262173 ± 20327 ± 300
Yield (step/overall) 47%41%24%25%
Purity100%79%88%57%
DNA [ppm]138313220708
In particular, the unmodified and diluted supernatant only 25% yield was obtained. Again we assumed that this was due to the temperature difference of the precipitate suspension (−10° C.) and the syringes and filters (room temperature) and the rather high stirrer speed (1000 rpm). Besides the low yield, strategy “G” seems already quite promising; the dissolved precipitate is of high purity and compared to the other methods the DNA concentration is low. Surprisingly, precipitation was not observed using strategy “H”. This may be due to a pH shift upon temperature reduction, perhaps because the buffering capacity of the cell culture supernatant is lower at pH 7.5 than at 6.5. Strategy “I”, which aims to selectively precipitate antibody while keeping protein impurities and DNA in solution, resulted in low purity and low yield. The reference strategies using the pure (“J”) and diluted (“K”) cell culture supernatant also resulted in low yield. Comparing the SEC chromatograms (FIG. 6) all strategies except strategy “G” seem to give dissolved precipitates of high purity. Even the dissolved precipitates of the strategies “J” and “I” have, in contrast to the measured purity given in Table 8, a rather high purity.

A modified Strategy C was also used to isolation monoclonal antibody from supernatant B (Tables 9 and 10). It was surprisingly found that the solubility of the resulting monoclonal antibody was different from that isolated from supernatant A using the same procedures (e.g., as the monoclonal antibodies in A and B differ only in that each is prepared using a different cell line).

TABLE 9
Predicted solubility
(Jungbauer et al.
PurificationConductivityEthanolTemperatureIgG2010c) ProteinDNA
strategySalt type[mS/cm]pH[%(v/v)][° C.][μg/ml]impurities [μg/ml'[ng/ml]
CCaCl2298.504.0186531680406.00.0
CaCl2296.525−101228.6436.89.9
GCaCl2296.55−0.525528141694
CaCl2796.510−3.4108701066266
CaCl2706.540−101291842516
INaCl207.540−10.07944218
JClarified cell culture40−10Not available
supernatant
K1:4 diluted40−10Not available.

TABLE 10
CGIJK
IgG1084 ± 45 310 ± 8 940 ± 140625 ± 16345 ± 3 
(μg/ml)
Protein103 ± 16 13 ± 6256 ± 2 86 ± 3239 ± 16 
impurities
(μg/ml)
DNA308 ± 10128 ± 2409 ± 76 206 ± 3 83 ± 18
(ng/ml)
Yield70%22%60%96%99%
(overall)
Purity92%92%79%92%59%
DNA28392434553296
(ppm)

In Table 2-9, purity is calculated as IgG content by protein A chromatography and Bradford assay. As shown in Table 2-9, strategy C provided a monoclonal antibody B product with high solubility. Strategy G provided significant reduction in DNA but also a significant loss of IgG. The overall yield was between 22 and 99%. Modification of the culture supernatant (e.g, Strategies J and K) provided higher yields. SEC chromatograms are provided in FIG. 8. This data demonstrates that the highest purity and yield result from Strategy C.

6. Isolation of Monoclonal Antibodies from Monoclonal Antibody-containing Cell Culture “Supernatant C”.

Five different purification strategies were evaluated to determine the optimal conditions for purifying monoclonal antibody from monoclonal antibody-containing cell culture supernatant C (“supernatant C” containing monoclonal antibody having a pI˜6.8), as summarized in Table 12.

TABLE 12
Predicted solubility
(Jungbauer et al.
PurificationConductivityEthanolTemperatureIgG2010c) ProteinDNA
strategySalt type[mS/cm]pH[%(v/v)][° C.][μg/ml]impurities [μg/ml'[ng/ml]
LCaCl2106.510−5.33723129181
CaCl2406.520−101902531218
MCaCl2107.55−2.4690259158
CaCl2207.540−2.446292380
NNaCl406.515−5.32921557976
ONo modification15−5.3Not available
P1:4 diluted15−5.3Not available.
The first two precipitation strategies focus again on initial precipitation of the impurities, followed by precipitation of the antibody. Strategy “L” can be performed at low pH (6.5) while strategy “M” at medium pH (7.5). Strategy “N” aims again at the selective precipitation of the antibody whereas the protein impurities and DNA are kept in solution. Again, reference purification strategies using unmodified and diluted supernatant, “O” and “P”, were performed. For strategy “L” an initial precipitation was observed after the first precipitation step. This fraction is given in Table 13 as “L Precipitate 1” whereas “L Precipitate 2” refers to the second precipitation observed.

TABLE 13
LL
PrecipitatePrecipitate
12MNOP
IgG [μg/ml]1274 ± 56 67 ± 12728 ± 4 394 ± 231095 ± 6 333 ± 49
Protein impurities531 ± 191 1 ± 17 251 ± 218 10 ± 102 482 ± 80 33 ± 54
[μg/ml]
DNA[ng/ml]4880 ± 202634 ± 11516 ± 51219 ± 7 765 ± 9227 ± 50
Yield (stepoverall)81%16%46%25%65%77%
Purity71%99%74%98%69%91%
DNA [ppm]3830507709556699682
The calculated yield (81%), almost all IgG, was found in this first fraction. However, DNA removal as well as protein impurity removal was insufficient. Again this unexpected precipitation could be due to changes in the pH upon temperature change. Insufficient DNA precipitation may be due to insufficient phosphate in the supernatant. It can be assumed that the DNA precipitation mechanism is based on a calcium-phosphate precipitation. Strategy “L” could be improved upon addition of phosphate and simultaneous decrease of ethanol addition and increase of temperature. Strategy “M” also resulted in high levels of DNA, probably due to the lack of phosphate, but also in low yield and low purity. Further temperature decrease might increase the efficiency of the antibody precipitation. The use of less ethanol may also increase purity. Surprisingly strategy “N”, where the antibody is selectively precipitated, provided good purity and DNA removal. However, yield was less than satisfactory (25%). Further decrease of temperature and/or increase of ethanol concentration may improve the yield. The best result was obtained with strategy “P” which used the diluted supernatant: purity was around 90% and yield around 77% (e.g., high yield). Furthermore, in the purifications described in Table 15, an improved method for precipitate recovery was used: the pre-cooling of syringes and filters. This resulted in even higher yield and purity (99%, and 99% respectively for strategy P). This strategy employed a total of a 1:8 dilution of the supernatant. Considering the SEC chromatograms of the precipitates of the different precipitation strategies, the large molecular weight fraction could not be removed by ethanol precipitation. This may be due to the incomplete DNA precipitation caused by the low phosphate concentration in the supernatant, or these may be antibody aggregates. Calcium was determined to be less efficient in the removal of DNA from supernatant C than supernatant A or B. Further addition of phosphate may assist with DNA removal.

The modified Strategy C (conductivity of 29 mS/cm) was also tested on supernatant C (Table 14). It was not expected that Strategy C would provide a sufficiently pure “C” preparation considering the predicted low solubility thereof. One would have predicted that DNA would co-precipitate and the monoclonal antibody yield would be low. Table 15 provides an overview of the composition of the various dissolved pellets. As shown therein, despite the addition of phosphate prior to calcium chloride, DNA removal was not complete.

TABLE 14
Predicted solubility
(Jungbauer et al.
PurificationConductivityEthanolTemperatureIgG2010c) ProteinDNA
strategySalt type[mS/cm]pH[%(v/v)][° C.][μg/ml]impurities [μg/ml'[ng/ml]
CCaCl2298.504.035932884809.4
CaCl2296.525−10330.1112.2425.9
LCaCl2106.510−5.33723129181
CaCl2406.520−101902531218
MCaCl2107.55−2.4690259158
CaCl2207.540−2.446292380
NNaCl406.515−5.32921557976
ONo modification15−5.3Not available
P1:4 diluted15−5.3Not available.

TABLE 15
CLMNPO
IgG [μg/ml]931 ± 207801 ± 53 1074 ± 68 385 ± 55 1098 ± 233 500 ± 87
Protein impurities [μg/ml]27 ± 77 8 ± 34 10 ± 43 6 ± 1310 ± 17 26 ± 82
DNA [ng/ml]577 ± 1162908 ± 1340538 ± 49939 ± 269790 ± 1343024 ± 604
Yield (overall)92%60%60%24%99%95%
Purity96%99%99%99%99%99%
DNA [ppm]623363744324707606296

Based on the results presented in Table 2-13 and FIGS. 2-7B, strategies C and P (1:4 dilution of supernatant in H2O followed by the addition of 15% (v/v) ethanol) are optimal. According to the SEC data, Strategy M may provide the highest purity but the yield provided by Strategy C is significantly higher.

7. Further Modified Strategy C (Addition of Phosphate)

Supernatants A, B and C were separately evaluated using a modified strategy involving the addition of phosphate. The method included an initial CaCl2 precipitation followed by a first ethanol precipitation. The pellet from the first ethanol precipitation was then dissolved in 20 mM histidine, 100 mM NaCl, pH 6.5. Sodium phosphate was then added to a final concentration of 4 mM to assist in the second CaCl2 precipitation. All experiments were performed in quadruplets and the precipitates recovered by centrifugation. This purification procedure is illustrated in FIG. 10.

Table 16 provides the mass balance for the small-scale purification of IgG from supernatant B using this further modified strategy C. The required purity (100-fold HCP reduction) is achieved after the second ethanol precipitation. However, additional precipitation steps resulted in a significant loss of IgG over the course of the purification. Each step provided a yield of 64-77%, resulting in an overall yield of 26%. This is evident from the SEC chromatograms (FIG. 11; note: “C3” results not represented in Table 16). SEC chromatograms for the ethanol and CaCl2 precipitates were compared. As shown in FIG. 12, the impurities eluting at about 12 minutes in the precipitates of step 1 are removed in the precipitates of step 2 (except C3).

TABLE 16
IgGYieldHCP
(μg/HCPDNAPuri-(step/reduction
ml)(ppm)(ppm)tyoverall)factor
Supernatant138344792752 12%
1st CaCl21020NDND 14%75%/75%
precipitation
1st ethanol6804505 83>90%77%/58%9.9
precipitation
2nd CaCl2531NDND>90%71%/41%
precipitation
2nd ethanol250289149>95%64%/26%155
precipitation

This process was also used to purify antibody from supernatant C. The results are summarized in Table 17. The overall HCP reduction was about 80-fold. Recovery data is presented in FIG. 13. As shown in FIG. 14, the impurities eluting at about 12 minutes (e.g., typically between about ten to 12 minutes) in the precipitates of step 1 are removed in the precipitates of step 2 (except C3).

TABLE 17
IgGYieldHCP
(μg/HCPDNAPuri-(step/reduction
ml)(ppm)(ppm)tyoverall)factor
Supernatant18251455619161 ~25%
1st CaCl21573NDND  24%88%/88%
precipitation
1st ethanol119617201126>90%81%/71%8.5
precipitation
2nd CaCl2820NDND>90%92%/65%
precipitation
2nd ethanol7031732204>95%87%/57%84
precipitation

Mass balance data resulting from purification of monoclonal antibody from supernatant A, B, C, or D using modified strategy C (FIG. 17) is presented in Tables 18, 19, 20, and 21:

TABLE 18
IgGYieldHCP
[μg/HCPDNAPuri-(step/reduction
ml][ppm][ppm]tyoverall)factor
Supernatant150832949642  29%
1st CaCl21400n.d.n.d.  29%94%/94%
precipitation
1st Ethanol8174000131>90%77%/72%10
precipitation
2nd CaCl2306n.d.n.d.>90%78%/56%
precipitation
2nd Ethanol209752 54>90%33%/18%43
precipitation

TABLE 19
IgGYieldHCP
[μg/HCPDNAPuri-(step/reduction
ml][ppm][ppm]tyoverall)factor
Supernatant7891745383335 ~12%
1st CaCl2534n.d.n.d.  11%95%/95%
precipitation
1st Ethanol39453345492>90%69%/66%3
precipitation
2nd CaCl2297n.d.n.d.>90%79%/52%
precipitation
2nd Ethanol1701825302>95%58%/30%95
precipitation

TABLE 20
IgGYieldHCP
[μg/HCPDNAPuri-(step/reduction
ml][ppm][ppm]tyoverall)factor
Supernatant199738670222131 ~23%
1st CaCl21960n.d.n.d.  26%95%/95%
precipitation
1st Ethanol1265256657739>90%98%/93%3
precipitation
2nd CaCl21128n.d.n.d.>90%93%/86%
precipitation
2nd Ethanol899 5362398>99%80%/67%72
precipitation

TABLE 21
IgGYieldHCP
[μg/HCPDNAPuri-(step/reduction
ml][ppm][ppm]tyoverall)factor
Supernatant294890755217~30%
1st CaCl22544n.d.n.d.  29%86%/86%
precipitation
1st Ethanol1593122503101>90%84%/72%1
precipitation
2nd CaCl21345n.d.n.d.>90%86%/62%
precipitation
2nd Ethanol9988254 36>95%74%/46%11
precipitation

8. Large-scale Isolation Procedures

In some smaller scale embodiments, the use of 50 mM CaCl2 for the CaCl2 precipitation step provided a yield of only about 18% and a HCP reduction of only about 43-fold. At higher CaCl2 concentrations (added up to 29 mS/cm), significantly higher HCP reduction (159-fold) and yield (26%) were observed. In the large-scale isolation procedures described here, 250 mM CaCl2 (˜50 mS/cm) was selected as providing high HCP reduction and good yield. The CEP step was maintained at −10° C., 2 h, and 25% (v/v) ethanol. The CaCl2 precipitation was performed at room temperature using a beaker and a magnetic stirrer. For adjustment of pH, CaCl2 and phosphate concentrations a 25% HCl, 10.0 M NaOH, 5.0 M CaCl2 and a 0.3 M N2HPO4 solution were used. For CEP, the solutions were transferred to an EasyMax reactor. FIG. 18 describes the temperature profile, the IR probe response, and the ethanol concentration of the first (A) and second (B) CEP precipitation in the EasyMax reactor. Ethanol was added over 4 h while simultaneously decreasing the temperature from 4° C. to −10° C. where it was then kept for 2 h to reach precipitation equilibrium. As shown in FIG. 18, the first and second CEP precipitation begins at about three hours (−6° C., >20% (v/v) ethanol). The turbidity reaches quickly its equilibrium, suggesting that the precipitation is a rather fast reaction. During the purification, samples were drawn after each precipitation step and analysed by analytical protein A chromatography, SEC, and CHO HCP ELISA (Table 22). As shown therein, the yield increased to 64% and a high HCP reduction (83-fold) was observed. As shown in FIG. 19, the final dissolved precipitate is of high purity and the IgG obtained is highly monomeric.

In another embodiment, the precipitate was isolated after the second CaCl2 precipitation using a syringe filter (Whatman, 0.2 μm) instead of centrifugation. The samples were drawn after each precipitation step and analysed by analytical protein A chromatography, SEC and CHO HCP ELISA (Table 23). As shown therein, yield increased to 71% and HCP reduction remained high (128-fold). However, due to the longer exposure to room temperature, the precipitate collected by filtration (2nd CEP) partially dissolved and the soluble IgG fraction found in the supernatant was higher (167 mg/l) than expected (64 mg/l) resulting in a lower step yield for the 2nd CEP (84%) than for the 1st CEP (94%). Assuming a similar concentration of the soluble fraction of the 2nd CEP as for the 1st CEP, the step yield as well as the overall yield would have been higher (step yield ˜95%; overall yield ˜80.5%). As seen in FIG. 20, the final dissolved precipitate is of high purity and the IgG obtained is highly monomeric. This procedure was repeated with another supernatant sample and similar results were observed (91-fold HCP reduction; Table 24, FIG. 21). As shown in FIG. 21, the resulting precipitate is of high purity and the IgG obtained is highly monomeric.

This procedure was also carried out using supernatant C (Table 25). As shown therein, the yield increased to 91% but the HCP reduction was only 23-fold. As can also be seen in FIG. 22, the final dissolved precipitate is of high purity but contained a larger amount of IgG aggregates.

This procedure was also carried out on Supernatant D. The precipitation was performed as previously and the samples drawn after each precipitation step analysed by analytical protein A chromatography, SEC and CHO HCP ELISA (Table 26). The yield increased to 76% but the HCP reduction was only 48-fold. As shown in FIG. 23, the final dissolved precipitate is high purity IgG.

TABLE 22
Purification of monoclonal antibody from supernatant A at large scale (70 ml) using the EasyMax reactor
DilutionIgGIgG yieldMonomerPurityHCPHCP Reduction
factor[μg/ml]stepoverall******[ppm]stepoverall
Supernatant1.0012225421200
1st CaCl21.12102994%94%446411.21.2
supernatant
1st CEP1.0087485%80%69226.57.8
precipitate
2nd CaCl21.0768486%69%31572.317.2
supernatant
2nd CEP1.0063693%64%>99.9%>99.9%>99.9%95.3%6504.983.4
precipitate

TABLE 23
Purification of monoclonal antibody from supernatant A at large scale (70 ml) using the EasyMax reactor
DilutionIgGIgG yieldMonomerPurityHCPHCP Reduction
factor[μg/ml]stepoverall******[ppm]stepoverall
Supernatant1.00152113533600
1st CaCl21.10137999%99%698771.81.8
supernatant
1st CEP1.00124991%90%1582947.1
precipitate
2nd CaCl21.07106594%95%26154.736.2
supernatant
2nd CEP1.0089484%71%>99.9%99.9%>99.9%96.0%6203.5128.3
precipitate

TABLE 24
Purification of monoclonal antibody from supernatant A at large scale (70 ml) using the EasyMax reactor
DilutionIgGIgG yieldMonomerPurityHCPHCP Reduction
factor[μg/ml]stepoverall******[ppm]stepoverall
Supernatant1.002563.4109231
1st CaCl21.002379.498.0%98.0%267734.14.1
supernatant
1st CEP1.132172.491.3%89.3%98.7%88.4%152241.87.2
precipitate
2nd CaCl21.001991.798.1%87.6%38653.928.3
supernatant
2nd CEP1.351816.491.2%79.9%99.9%99.7%99.9%96.7%12023.290.9
precipitate

TABLE 25
Purification of monoclonal antibody from supernatant C at large scale (70 ml) using the EasyMax reactor
DilutionIgGIgG yieldMonomerPurityHCPHCP Reduction
factor[μg/ml]stepoverall******[ppm]stepoverall
Supernatant195300180099
1st CaCl21.07180899%99%
supernatant
1st CEP1.00164989%88%90.1%80.1%868242.132.13
precipitate
2nd CaCl21.071487>99% 97%
supernatant
2nd CEP1.00139194%91%89.5%91.8%89.5%87.5%82769.3723.16
precipitate

TABLE 26
Purification of monoclonal antibody from supernatant
D at large scale (70 ml) using the EasyMax reactor
DilutionIgGIgG yieldMonomerPurityHCPHCP Reduction
factor[μg/ml]stepoverall******[ppm]stepoverall
Supernatant332281752
1st CaCl21.09282692%92%
supernatant
1st CEP1.00n.a.n.a.n.a.n.a.n.a.n.a.
precipitate
2nd CaCl21.08233789%82%
supernatant
2nd CEP1.00216293%76%99.4%n.a.99.4%n.a.370222.0948.65
precipitate

9. Modified Method Including a Single CaCl2 Precipitation

It was concluded that the first ethanol precipitation step had the most significant impact on impurity (HPC) removal. In some cases, the first CaCl2 precipitation was observed to only slightly influence impurity removal and result in significant IgG loss (e.g., 25%). A modified strategy in which the first CaCl2 precipitation step was removed while the first and second ethanol precipitation steps and the second CaCl2 precipitation maintained was therefore developed.

To optimize the first ethanol precipitation step, crude supernatant A was mixed with ethanol to a final ethanol concentration of 10%, 15%, 20%, 25%, or 30%. The solubility of IgG in each preparation is shown in FIG. 15(A). As shown therein, IgG is not precipitated in the presence of 10% ethanol but begins to precipitate with 15% ethanol and reaches equilibrium at 25% ethanol. FIG. 15(B) shows no difference between IgG and DNA for 20%, 25%, and 30% but a significant difference in HCP (30% ethanol significantly higher). A final concentration of 25% was therefore selected as optimal for the first ethanol precipitation step.

The effect of washing after the first ethanol precipitation step was also examined. The precipitate from ethanol precipitation was collected by centrifugation and immediately dissolved in histidine buffer (20 mM histidine, 100 mM NaCl, pH 6.0) or washed three times with 25% ethanol before being dissolved in the histidine buffer. As shown in Table 27, washing resulted in a significantly reduced yield (60%) without a significant improvement in HCP reduction (from 2.9-fold without wash to 3.6-fold with wash).

TABLE 27
No washWash (3-times)
IgG1109778
(μg/ml)
Yield85%60%
HCP (ppm)123519893
HCP reduction2.93.6
factor

As mentioned above, the CaCl2 precipitation step preceding the first ethanol precipitation step was excluded. However, the CaCl2 precipitation following the first ethanol precipitation was retained and optimized as described herein. A variety of conditions were evaluated as shown in Table 28:

TABLE 28
(<q = below quantification; <d. = below detection)
PhosphateCaC12TempDNAYieldPurity
[mM]]mM]pH[° C.][ng/ml][%][%]
1506.54881.0102%65%
1506.520901.7103%66%
1508.54<q.100%69%
1508.520<q.101%70%
11506.54374.0100%58%
11506.520160.5100%57%
11508.54<d. 98%59%
11508.520<d. 99%60%
4506.54 53.7108%76%
4506.520<q. 88%71%
4508.54<q. 98%71%
4508.520<q.100%72%
41506.54<d. 97%62%
41506.520<d. 75%52%
41508.54<d. 96%63%
41508.520<d. 98%61%
As shown in Table 28, DNA flocculation is optimum at basic pH (pH 8.5). DNA is not detected in the remaining supernatant when 150 mM CaCl2 is utilized. The yield is typically sufficiently high (96-100%). Yield was low under conditions of 20° C., pH 6.4, 4 mM phosphate (75% using 150 mM CaCl2 or 88% using 50 mM CaCl2). The optimal conditions for this step were determined to be 20° C., pH 8.5, 4 mM phosphate, 50 mM CaCl2 because DNA was below quantifiable levels and both yield and purity were high.

The second ethanol precipitation step, which followed the first ethanol precipitation step (−10° C., 25% ethanol) and CaCl2 precipitation steps (20° C., pH 8.5, 4 mM phosphate, 50 mM CaCl2) described above, was also optimized. Ethanol was added to a final concentration of 10%, 15%, 20%, 25%, or 30%. After incubation for two hours at −10° C., the precipitate was collected by centrifugation and dissolved in histidine buffer (20 mM histidine, 100 mM NaCl, pH 6.0). The soluble and precipitated fractions were then analyzed, as presented in FIG. 2-7I. As shown therein, no significant difference between these conditions was observed. Twenty-five percent ethanol was therefore selected as optimal.

The HCP concentration in the dissolved pellet resulting from this modified method was significantly higher than that produced by the original method (e.g., FIGS. 1, 10). While the presence of CaCl2 appeared not to influence HCP concentration, the presence of CaCl2 improved HCP removal in the subsequent ethanol precipitation (Table 29).

TABLE 29
Original methodNo washWash (3-times)
Supernatant A360713607136071
1st CaCl232863
precipitation
1st ethanol2530123519893
precipitation
Based on these results, the optimal CaCl2 precipitation step may be: 1) 4 mM phosphate (e.g., supernatant may be adjusted to this level); 2) 50 mM CaCl2; and, 3) −20° C. (FIG. 17).

As shown herein, variations in the ethanol precipitation steps did not typically provide improvements in HCP content or yield although 25% ethanol and −10° C. were determined to be optimal. Washing had a beneficial effect on purity but also resulted in lower yield. Typically, then, the washing steps may not be necessary. And, while the CaCl2 step may have little effect on HCP removal, it was found to be an important (e.g., critical) precursor step to the ethanol precipitation step. The use of 50 mM CaCl2 was also found to be optimal (e.g., as compared to 120-150 mM CaCl2 in the original method). While yield was typically comparable, lower concentrations of CaCl2 typically led to greater HCP reduction.

10. Influence of Filtration Conditions on Recovery and Purity after Precipitation at −10° C.

The yields observed for the purification strategies evaluated were sometimes significantly lower than expected. Comparing the experimental set-up of the filter screening to the conditions of the real purifications, significant differences resulted from changes in stirrer speed and temperature. The filter screening was performed in the cold room at 4° C. in a 400 ml vessel with a stirrer speed of 400 rpm. The purifications were performed at ambient temperature. Only the precipitate and the washing solution were at the required temperature (e.g., −10° C.). The stirrer speed may be significantly higher (1000 rpm for a volume of 10 ml). Three parameters were selected for screening: stirrer speed, washing conditions, and the storage temperature of syringes and filters. As the lab reactor used for the precipitation method screening is at ambient temperature, all handling had to be performed at that temperature. In order to evaluate if these parameters resulted in the low recovery, a second filter screening was performed, as summarized in Table 30.

TABLE 30
ParametersVariation
Stirrer speed400 rpm
1000 rpm
WashingWash
No Wash
Storage temperature ofRoom temperature (RT)
syringes and filter4° C. (fridge)
−20° C. (freeaer)
For each experiment, 96% (v/v) ethanol was added to 5 ml of supernatant (e.g., supernatant A) to a final concentration of ˜40% (v/v) ethanol. The suspensions were equilibrated for 2 h at −10° C. and collected by filtration using the depth filter. If required, the precipitate was washed by rinsing the filter with a tempered 40% (v/v) ethanol solution. The syringes and filters were stored at the respective temperature until used. The obtained samples are given in Table 31.

TABLE 31
Run #Stirrer speedWashingStorage temperature
1400WashRT
2400No WashRT
3400Wash 4° C.
4400No Wash 4° C.
5400Wash−20° C.
6400No Wash−20° C.
71000WashRT
81000No WashRT
91000Wash 4° C.
101000No Wash 4° C.
111000Wash−20° C.
121000No Wash−20° C.

The concentration of IgG in the precipitation supernatant, the washing fraction, and the dissolved precipitate was determined by analytical protein A chromatography. The IgG present in the precipitation supernatant and the washing fraction was below the lower limit of quantification of the method used. It was therefore concluded that the yield is only negligible different from the mass balance. For a first estimation of the impact of the three main factors the average yield was calculated (FIG. 24). The stirrer speed had no significant impact on the average yield (˜70%) but the standard deviation of the yield is for a stirrer speed of 400 rpm significantly higher than for 1000 rpm (likely due to differences in the particle size and density). The energy input, in our case due to the mechanical stirring, is an important parameter for the particle size and density: In general, particle size decreases and particle density increases with energy input. Also, a certain energy input is required to form homogenous particles. It was assumed that the particles obtained at a stirrer speed of 400 rpm are large, not that dense and of inhomogeneous size. Therefore, significant differences in yield can be observed. On the other hand, the particles obtained at a stirrer speed of 1000 rpm are smaller but denser and should be of a homogenous size distribution. It was determined that washing results in a loss of about 10% IgG as compared to no washing. The standard deviation is similar for either case. It was observed that storage at room temperature results in a lower yield (60%) as compared to storage at 4° C. (80%) or −20° C. (70%).

A more detailed analysis of the influence of stirrer speed and washing is provided in FIG. 25. The precipitates obtained at a stirrer speed of 400 rpm show a similar average yield when washed or when not washed. Only the standard deviation of the samples which were washed is larger than the samples which were not washed. In case of the higher stirrer speed, the standard deviation of the washed precipitates and the unwashed precipitates is similar but the average of the washed precipitates is lower. It was assumed that the smaller particles formed at 1000 rpm were more easily dissolved than the particles at 400 rpm. Therefore, washing of particles formed at 1000 rpm has more impact. In contrast the particles formed at 400 rpm are not homogenous, therefore the large standard deviation is observed in case of the washed precipitate. Depending on the sample a part of the precipitate can be easily dissolved during washing. A stirrer speed of about 600 rpm was found optimal in these experiments. Lower speed may lead to non-homogeneous particle size and varying yield. A higher stirring speed will result in small particles which can easily dissolve during washing. The syringes and filters may also be stored at 4° C., which should also significantly reduce loss of precipitate during collection. With these conditions, the evaluation of the precipitation strategies will be repeated. After up-scaling, collection may be performed by centrifugation.

11. Elution Profile of Dissolved Precipitate—Recovery and Purity

The wash-out effect of the depth filters used for recovery collection and dissolution was also studied. Monoclonal antibody A supernatant was precipitated using 40% (v/v) ethanol and dissolved with aliquots of 1 ml histidine buffer (20 mM histidine, 100 mM NaCl, pH 6.0). The effluent was collected and analyzed by analytical protein A chromatography. The purity of the effluent fractions was also determined by comparison of the area of the IgG peak and the total peak areas. This method was found sufficient for monitoring the purity trend of the effluent fraction. In FIG. 26, the concentration and purity of the effluent fraction is depicted. As shown therein, the first fraction is of low purity due to the precipitation supernatant still present in the filter. Purity increases in the second fraction and also a concentration spike is observed. In the following fractions, no trend regarding purity was observed (although it varied between 40-50%). This is not too high and may be ascribed to unspecific precipitation conditions and the rather simple method of purity determination. The concentration was stable in the first five fractions before an exponential wash-out was observed. From the calculated yield of each fraction, and the cumulative yield, a dissolution volume of approximately 10 ml was estimated to be sufficient for obtaining a suitable, though not complete, recovery of precipitated IgG. Precipitation collection by filtration is typically most useful at smaller scale (<20 ml). With up-scaling, centrifugation may be used as it allows faster and easier handling of larger volumes.

C. Conclusions

The comparison of the purification strategies for the monoclonal antibody-containing supernatants A, B and C surprisingly showed that the purification strategies presented here may be used to selectively separate IgG from protein impurities and DNA directly from cell culture supernatant with exceptional purity and yield. For example, for supernatant A, purification strategies B and C may be optimal. For supernatant B, strategies C and K may be optimal. And for supernatant C, purification strategies C, M and O may be optimal. Purification strategy C provides good results for all supernatants and may therefore be the most generally optimal strategy. In addition, in some instances, it may be optimal to perform two precipitations to obtain a satisfactory purity (HCP). Modified strategy C (e.g., FIG. 17) may also be optimal and generally applicable to the isolation of many different monoclonal antibodies (e.g., of different pIs) from different sources (e.g., supernatant of various types of cells). Decreased yield may result from the method of precipitate recovery (e.g., washing and dissolution). In particular, reducing the temperature difference between the precipitate and the syringes and filters by using tempered syringes and filters (4° C.) provides increased yield. Comparison of the different alcohols for their effect on antibody precipitation led to the conclusion that ethanol could be replaced by methanol or isopropanol with no obvious change in the precipitation behaviour of the antibody.

While the present invention has been described in terms of the preferred embodiments, it is understood that variations and modifications will occur to those skilled in the art. Therefore, it is intended that the appended claims cover all such equivalent variations that come within the scope of the invention as claimed.

+ Open protocol
+ Expand
3

Cloning and Purification of Meningococcal Lipoproteins

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

DNA Sequencing of the BASB041 Gene from Two N. meningitidis Strains.

A: BASB041 in N. meningitidis serogroup B strain ATCC13090.

The BASB041 gene of N. meningitidis strain ATCC 13090 is shown in SEQ ID NO:1 The translation of the BASB041 polynucleotide sequence, shown in SEQ ID NO:2, shows significant similarity (28% identity in a 130 amino acids overlap) to a hypothetical protein of Aquifex aeolicus. The BASB041 polypeptide contains a signal sequence characteristic of a lipoprotein, and could thus be inserted into the outer membrane of the bacterium.

The sequence of the BASB041 gene was further confirmed as follows. For this purpose, genomic DNA was extracted from 1010 cells of the N. meningitidis cells (strain ATCC 13090) using the QIAGEN genomic DNA extraction kit (Qiagen Gmbh), and 1 μg of this material was submitted to Polymerase Chain Reaction DNA amplification using primers lip5-01 (5′-AAT GAA AAC CGT TTC CAC CGC-3′) [SEQ ID NO:7] and lip5-02 (5′-TCA TTT CTC CTT AAC GGT-3′) [SEQ ID NO:8]. This PCR product was gel-purified and subjected to DNA sequencing using the Big Dye Cycle Sequencing kit (Perkin-Elmer) and an ABI 373A/PRISM DNA sequencer. DNA sequencing was performed on both strands with a redundancy of 2 and the full-length sequence was assembled using the SeqMan program from the DNASTAR Lasergene software package. The resulting DNA sequence and deduced polypeptide sequence are shown as SEQ ID NO:3 and SEQ ID NO:4 respectively. It should be noticed that the DNA sequence of SEQ ID NO:3 has an additional nucleotide at position 616 relative to SEQ ID NO:1.

B: BASB041 in N. meningitidis Serogroup B Strain H44/76.

The sequence of the BASB041 gene was also determined in another N. meningitidis serogroup B strain, the strain H44/76. For this purpose, genomic DNA was extracted from the N. meningitidis strain H44/76 using the experimental conditions presented in the previous paragraph. This material (1 kg) was then submitted to Polymerase Chain Reaction DNA amplification using primers LipS-01 and Lip5-02 specific for the BASB041 gene. The PCR amplicon was then submitted to DNA sequencing using the Big Dyes kit (Applied biosystems) and analyzed on a ABI 373/A DNA sequencer in the conditions described by the supplier. As a result, the polynucleotide and deduced polypeptide sequences, referred to as SEQ ID NO:5 and SEQ ID NO:6 respectively, were obtained. It should be noticed that the DNA sequence of SEQ ID NO:5 has an additional nucleotide at position 616 relative to SEQ ID NO:1. Using the MegAlign program in the DNASTAR Lasergene package, an alignment of the polynucleotide sequences of SEQ ID NO:1, 3 and 5 was performed, and is displayed in FIG. 1; a pairwise comparison of identities is summarized in Table 1, showing that the three BASB041 polynucleotide gene sequences are all similar at identity level greater than 99.0%. Using the same MegAlign program, an alignment of the polypeptide sequences of SEQ ID NO:2, 4 and 6 was performed, and is displayed in FIG. 2. A pairwise comparison of identities is summarized in Table 2, showing that SEQ ID NO:4 and 6 are 100% identical; their dissimilarity with SEQ ID NO:2 is entirely contained in the last 18 residues, and is due to the missing nucleotide in SEQ ID NO:1 relative to SEQ ID NO:3 and 5.

Taken together, these data inditate strong sequence conservation of the BASB041 gene among the two N. meningitidis serogroup B strains.

TABLE 1
Pairwise identities of the BASB041
polynucleotide sequences (in %)
SeqID No: 3SeqID No: 5
SeqID No: 199.8%99.2%
SeqID No: 399.4%

TABLE 2
Pairwise identities of the BASB041
polypeptide sequences (in %)
SeqID No: 4SeqID No: 6
SeqID No: 292.3%92.3%
SeqID No: 4 100%
Construction of Plasmid to Express Recombinant BASB041
A: Cloning of BASB041.

The NdeI and SalI restriction sites engineered into the forward Lip5-Fm/p (5′-AGG CAG AGG CAT ATG AAA ACC GTT TCC ACC GCC GTT GTC CTT GC-3′) ([SEQ ID NO:9]) and reverse Lip5-RCf/p (5′-AGG CAG AGG GTC GAC TTT CTC CTT AAC GGT TGG GTT GCC ATG CGC-3′)([SEQ ID NO:10]) amplification primers, respectively, permitted directional cloning of a BASB041 PCR product into the commercially available E. coli expression plasmid pET24b (Novagen, USA, kanamycin resistant) such that a mature BASB041 protein could be expressed as a fusion protein containing a (His)6 affinity chromatography tag at the C-terminus. The BASB041 PCR product was purified from the amplification reaction using silica gel-based spin columns (QiaGen) according to the manufacturers instructions. To produce the required NdeI and Sail termini necessary for cloning, purified PCR product was sequentially digested to completion with NdeI and Sail restriction enzymes as recommended by the manufacturer (Life Technologies). Following the first restriction digestion, the PCR product was purified via spin column as above to remove salts and eluted in sterile water prior to the second enzyme digestion. The digested DNA fragment was again purified using silica gel-based spin columns prior to ligation with the pET24b plasmid.

B: Production of Expression Vector.

To prepare the expression plasmid pET24b for ligation, it was similarly digested to completion with both NdeI and SalI and then treated with calf intestinal phosphatase (CIP, ˜0.02 units/pmole of 5′ end, Life Technologies) as directed by the manufacturer to prevent self-ligation. An approximately 5-fold molar excess of the digested fragment to the prepared vector was used to program the ligation reaction. A standard ˜20 μl ligation reaction (˜16° C., ˜16 hours), using methods well known in the art, was performed using T4 DNA ligase (˜2.0 units/reaction, Life Technologies). An aliquot of the ligation (˜5 μl) was used to transform electro-competent BL21 DE3 cells according to methods well known in the art. Following a ˜2-3 hour outgrowth period at 37° C. in ˜1.0 ml of LB broth, transformed cells were plated on LB agar plates containing kanamycin (50 μg/ml. The antibiotic was included in the selection media to ensure that all transformed cells carried the pET24b plasmid (KnR). Plates were incubated overnight at 37° C. for ˜16 hours. Individual KnR colonies were picked with sterile toothpicks and used to “patch” inoculate fresh LB KnR plates as well as a ˜1.0 ml LB KnR broth culture. Both the patch plates and the broth culture were incubated overnight at 37° C. in either a standard incubator (plates) or a shaking water bath.

A whole cell-based PCR analysis was employed to verify that transformants contained the BASB041 DNA insert. Here, the ˜1.0 ml overnight LB Kn broth culture was transferred to a 1.5 ml polypropylene tube and the cells collected by centrifugation in a Beckman microcentrifuge (˜3 min., room temperature, ˜12,000×g). The cell pellet was suspended in ˜200 μl of sterile water and a ˜10 μl aliquot used to program a ˜50 μl final volume PCR reaction containing both BASB041 forward and reverse amplification primers. Final concentrations of the PCR reaction components were essentially the same as those specified in example 2 except ˜5.0 units of Taq polymerase was used. The initial 95° C. denaturation step was increased to 3 minutes to ensure thermal disruption of the bacterial cells and liberation of plasmid DNA. An ABI Model 9700 thermal cycler and a 32 cycle, three-step thermal amplification profile, i.e. 95° C., 45 sec; 55-58° C., 45 sec, 72° C., 1 min., were used to amplify the BASB041 PCR fragment from the lysed transformant samples. Following thermal amplification, a ˜20 μl aliquot of the reaction was analyzed by agarose gel electrophoresis (0.8% agarose in a Tris-acetate-EDTA (TAE) buffer). DNA fragments were visualized by UV illumination after gel electrophoresis and ethidium bromide staining. A DNA molecular size standard (1 Kb ladder, Life Technologies) was electrophoresed in parallel with the test samples and was used to estimate the size of the PCR products. Transformants that produced the expected PCR product were identified as strains containing a BASB041 expression construct. Expression plasmid containing strains were then analyzed for the inducible expression of recombinant BASB041.

C: Expression Analysis of PCR-Positive Transformants.

For each PCR-positive transformant identified above, ˜5.0 ml of LB broth containing kanamycin (50 μg/ml) was inoculated with cells from the patch plate and grown overnight at 37° C. with shaking (˜250 rpm). An aliquot of the overnight seed culture (˜1.0 ml) was inoculated into a 125 ml erlenmeyer flask containing ˜25 ml of LB Kn broth and grown at 37° C. with shaking (˜250 rpm) until the culture turbidity reached O.D.600 of ˜0.5, i.e. mid-log phase (usually about 1.5-2.0 hours). At this time approximately half of the culture (˜12.5 ml) was transferred to a second 125 ml flask and expression of recombinant BASB041 protein induced by the addition of IPTG (1.0 M stock prepared in sterile water, Sigma) to a final concentration of 1.0 mM. Incubation of both the IPTG-induced and non-induced cultures continued for an additional ˜4 hours at 37° C. with shaking. Samples (˜1.0 ml) of both induced and non-induced cultures were removed after the induction period and the cells collected by centrifugation in a microcentrifuge at room temperature for ˜3 minutes. Individual cell pellets were suspended in ˜50 μl of sterile water, then mixed with an equal volume of 2× Laemelli SDS-PAGE sample buffer containing 2-mercaptoethanol, and placed in boiling water bath for ˜3 min to denature protein. Equal volumes (˜15 μl) of both the crude IPTG-induced and the non-induced cell lysates were loaded onto duplicate 12% Tris/glycine polyacrylamide gel (1 mm thick Mini-gels, Novex). The induced and non-induced lysate samples were electrophoresed together with prestained molecular weight markers (See Blue, Novex) under conventional conditions using a standard SDS/Tris/glycine running buffer (BioRad). Following electrophoresis, one gel was stained with commassie brilliant blue R250 (BioRad) and then destained to visualize novel BASB041 IPTG-inducible protein(s). The second gel was electroblotted onto a PVDF membrane (0.45 micron pore size, Novex) for ˜2 hrs at 4° C. using a BioRad Mini-Protean II blotting apparatus and Towbin's methanol (20%) transfer buffer. Blocking of the membrane and antibody incubations were performed according to methods well known in the art. A monoclonal anti-RGS (His) antibody, followed by a second rabbit anti-mouse antibody conjugated to HRP (QiaGen), was used to confirm the expression and identity of the BASB041 recombinant protein. Visualization of the anti-His antibody reactive pattern was achieved using either an ABT insoluble substrate or using Hyperfilm with the Amersham ECL chemiluminescence system.

Production of Recombinant BASB041

Bacterial Strain

A recombinant expression strain of E. coli BL21 DE3 containing a pET24b plasmid encoding BASB041 from N. meningitidis was used to produce cell mass for purification of recombinant protein. The expression strain was cultivated on LB agar plates containing 50 μg/ml kanamycin (“Kn”) to ensure plasmid maintenance. For cryopreservation at −80° C., the strain was propagated in LB broth containing the same concentration of antibiotic then mixed with an equal volume of LB broth containing 30% (w/v) glycerol.

Media

The fermentation medium used for the production of recombinant protein consisted of 2×YT broth (Difco) containing 50 μg/ml Kn. Antifoam was added to medium for the fermentor at 0.25 ml/L (Antifoam 204, Sigma). To induce expression of the BASB041 recombinant protein, IPTG (Isopropyl β-D-Thiogalactopyranoside) was added to the fermentor (1 mM, final).

Fermentation

A 500-ml erlenmeyer seed flask, containing 50 ml working volume, was inoculated with 0.3 ml of rapidly thawed frozen culture, or several colonies from a selective agar plate culture, and incubated for approximately 12 hours at 37±1° C. on a shaking platform at 150 rpm (Innova 2100, New Brunswick Scientific). This seed culture was then used to inoculate a 5-L working volume fermentor containing 2×YT broth and both Kn antibiotic. The fermentor (Bioflo 3000, New Brunswick Scientific) was operated at 37+1° C., 0.2-0.4 VVM air sparge, 250 rpm in Rushton impellers. The pH was not controlled in either the flask seed culture or the fermentor. During fermentation, the pH ranged 6.5 to 7.3 in the fermentor. IPTG (1.0 M stock, prepared in sterile water) was added to the fermentor when the culture reached mid-log of growth (˜0.7 O.D.600 units). Cells were induced for 2-4 hours then harvested by centrifugation using either a 28RS Heraeus (Sepatech) or RC5C superspeed centrifuge (Sorvall Instruments). Cell paste was stored at −20 C until processed.

Purification

Imidazole and biotechnology grade or better reagents were all obtained from Ameresco Chemical, Solon, Ohio. Triton X-100 (t-Octylphenoxypolyethoxy-ethanol), Triton X-114, sodium phosphate, monobasic, and urea were reagent grade or better and obtained from Sigma Chemical Company, St. Louis, Mo. Dulbecco's Phosphate Buffered Saline (1×PBS) was obtained from Quality Biological, Inc., Gaithersburg, Md. Dulbecco's Phosphate Buffered Saline (10×PBS) was obtained from BioWhittaker, Walkersville, Md. Penta-His Antibody, BSA free was obtained from QiaGen, Valencia, Calif. Peroxidase-conjugated AffiniPure Goat Anti-mouse IgG was obtained from Jackson Immuno Research, West Grove, Penn. All other chemicals were reagent grade or better.

Ni-chelatin Sepharose Fast Flow resin was obtained from Pharmacia, Sweden. Precast Tris-Glycine 4-20% and 10-20% polyacrylamide gels, all running buffers and solutions, SeeBlue Pre-Stained Standards, MultiMark Multi-Colored Standards and PVDF transfer membranes were obtained from Novex, San Diego, Calif. SDS-PAGE Silver Stain kits were obtained from Daiichi Pure Chemicals Company Limited, Tokyo, Japan. Coomassie Stain Solution was obtained from Bio-Rad Laboratories, Hercules, Calif. Acrodisc® PF 0.2 m syringe filters were obtained from Pall Gelman Sciences, Ann Arbor, Mich. GD/X 25 mm disposable syringe filters were obtained from Whatman Inc., Clifton, N.J. Dialysis tubing 8,000 MWCO was obtained from BioDesign Inc. Od New York, Carmal New York. BCA Protein Assay Reagents and Snake Skin dialysis tubing 3,500 MWCO were obtained from Pierce Chemical Co., Rockford, Ill.

Extraction Protocol

Cell paste was thawed at room temperature for 30 to 60 minutes. Five to six grams of material was weighed out into a 50-ml disposable centrifuge tube. Recombinant BASB041 antigen was purified by extraction of cell membranes with 1.0% Triton X114, and allowing phase partitioning based on Triton X114 cloud point at 37° C. The Triton X114 phase was diluted with 50 mM Tris-HCl containing 10% glycerol, 5% ethylene glycol and 0.5% Triton X100. This was applied to nickel-chelating Sepharose Fast Flow. The protein is afterwards eluted with 200 mM imidazole to affinity purify the histidine-tagged protein and yielded greater than 90% pure protein.

Binding of BASB041 to Nickel Affinity Resin

After extraction, the mixture was incubated to the nickel-chelating Sepharose Fast Flow and placed at room temperature with gentle agitation for one hour. After one hour, the nickel-chelating Sepharose Fast Flow is packed into an XK16 Pharmacia column, and eluted afterwards with 500 mM imidazole buffer to affinity purify the histidine tagged protein. This fraction was then dialyzed against 25 mM Phosphate buffer (pH7.0) containing 0.1% of Triton. This sample was then applied to a TOYOPEARL BUTYL650M column which was equilibrated with 25 mM Phosphate buffer (pH7.0) containing 2M sodium chloride and 0.1% of Triton. Elution was performed in the following buffer with 25 mM Phosphate buffer (pH7.0) containing 1M sodium chloride and 0.1% of Triton. This fraction was further applied to a DEAE-sepharose-FF in presence of 50 mM tris(pH7.5) containing 2 mMEDTA, 10 mMsodium chloride and 0.005% Triton X100. The DEAE flowthrough was dialyzed against PBS (pH7.4) containing 0.1% of Triton and stored at −70 at a concentration of 490 μg/ml.

Final Formulation

BASB041 was formulated by dialysis overnight against, three changes of 0.1% Triton X-100 and 1×PBS, pH 7.4. The purified protein was characterized and used to produce antibodies as described below.

Biochemical Characterizations: SDS-PAGE and Western Blot Analysis

The recombinant purified protein was resolved on 4-20% polyacrylamide gels and electrophoretically transferred to PVDF membranes at 100 V for 1 hour as previously described (Thebaine et al. 1979, Proc. Natl. Acad. Sci. USA 76:4350-4354). The PVDF membranes were then pretreated with 25 ml of Dulbecco's phosphate buffered saline containing 5% non-fat dry milk. All subsequent incubations were carried out using this pretreatment buffer.

PVDF membranes were incubated with a dilution of anti-His tail antibodies for 1 hour at room temperature. PVDF membranes were then washed twice with wash buffer (20 mM Tris buffer, pH 7.5, containing 150 mM sodium chloride and 0.05% Tween-20). PVDF membranes were incubated with 25 ml of a 1:5000 dilution of peroxidase-labeled species specific conjugate for 30 minutes at room temperature. PVDF membranes were then washed 4 times with wash buffer, and were developed with 3-amino-9-ethylcarbazole and urea peroxide as supplied by Zymed (San Francisco, Calif.) for 10 minutes each.

The results of an SDS-PAGE (FIG. 3) show a protein about 31 kDa purified to greater than 90% and that is reactive to an anti-RGS (His) antibody by western blots (FIG. 3) of the SDS-PAGE.

Immunization of Mice with Recombinant BASB041

Partially purified recombinant BASB041 protein expressed in E. coli has been injected three times in Balb/C mice on days 0, 14 and 28 (10 animals/group). Animals were injected by the subcutaneous route with around 5 μg of antigen in two different formulations: either adsorbed on 100 μg AlPO4 or formulated in SBAS2 emulsion (SB62 emulsion containing 5 μg MPL and 5 μg QS21 per dose). A negative control group consisting of mice immunized with the SBAS2 emulsion only has also been added in the experiment. Mice were bled on days 28 (14 days Post II) and 35 (7 days Post III) in order to detect specific anti-BASB041 antibodies. Specific anti-BASB041 antibodies were measured by western-blotting on pooled sera (from 10 mice/group) from both formulations (on day 7 Post III only), using recombinant protein (part of the gel) and Neisseria meningitidis B strains.

Recognition of the BASB041 epitopes on different Neisseria meningitidis Serogroup B strains by western-blotting

In this test, immunized mice sera (pooled) have been tested by western-blotting for recognition of the BASB041 epitopes on seven different Neisseria meningitidis B strains: H44/76 (B:15:P1.7, 16, lineage ET-5), M97 250687 (B:4:P1.15), BZ10 (B:2b:P1.2, lineage A4), BZ198 (B:NT*: -, lineage 3), EG328 (B:NT*, lineage ST-18), NGP165 (B:2a:P1.2, ET 37 cluster) and the ATCC 13090 (B:15:P1.15) Neisseria meningitidis B strains, as well as on partially purified recombinant BASB041 protein. (*: NT: Not Typed).

Briefly, 10 μl (>108 cells/lane) of each sample treated with sample buffer (10 min at 95° C.) are put into a SDS-PAGE gradient gel (Tris-glycine 4-20%, Novex, code no EC60252). Electrophoretic migration occurs at 125 volts for 90 min. Afterwards, proteins are transferred to nitrocellulose sheet (0.45 μm, Bio-rad code no 162-0114) at 100 volts for 1 hour using a Bio-rad Trans-blot system (code no 170-3930). Filter was blocked with PBS-0.05% Tween 20 overnight at room temperature, before incubation with the mice sera containing the anti-BASB041 antibodies from both AlPO4 and SBAS2 formulations. These sera are diluted 100 times in PBS-0.05% Tween 20, and incubated on the nitrocellulose sheet for two hours at room temperature with gentle shaking, using a mini-blotter system (Miniprotean, Bio-rad code no 170-4017). After three repeated washing steps in PBS-0.05% Tween 20 for 5 min., the nitrocellulose sheet is incubated at room temperature for 1 hour under gentle shaking with the appropriate conjugate (biotinylated anti-mouse Ig antibodies from sheep, Amersham code no RPN1001) diluted at 1/500 in the same washing buffer. The membrane is washed three times as previously, and incubated for 30 min with agitation using the streptavidin-peroxidase complex (Amersham code no 1051) diluted at 1/1000 in the washing buffer. After the last three repeated washing steps, the revelation occurs during the 20 min incubation time in a 50 ml solution containing 30 mg 4-chloro-1-naphtol (Sigma), 10 ml methanol, 40 ml PBS, and 30 μl of H2O2. The staining is stopped while washing the membrane several times in distillated water.

Results illustrated in FIGS. 4 and 5 show that all strains tested present the expected bands around 25-30 kDa (major) and 50 kDa (minor), which are recognized at the same level in all of the Neisseria meningitidis B strains tested. This means that the BASB041 protein is expressed in probably all Neisseria meningitidis B strains. In both figures, the recombinant BASB041 protein is also clearly recognized by mice sera at the same MW (second lane after the MW). Another band at around 20 kDa is known to be non-specific. This BASB041 protein is not recognized anymore in E. coli preparation.

Presence of Anti-BASB041 Antibodies in Sera from Convalescent Patients.

In this test, several convalescent sera have been tested by western-blotting for recognition of the purified recombinant BASB041 protein.

Briefly, 5 μg of partially purified BASB041 Neisseria meningitidis B protein are put into a SDS-PAGE gradient gel (4-20%, Novex, code no EC60252) for electrophoretic migration. Proteins are transferred to nitrocellulose sheet (0.45 μm, Bio-rad code no 162-0114) at 100 volts for 1 hour using a Bio-rad Trans-blot system (code no 170-3930). Afterwards, filter is blocked with PBS-0.05% Tween 20 overnight at room temperature, before incubation with the human sera. The following convalescent sera were tested: patients #262068, 261732, 262117, 261659, 261469, 261979, and 261324. These sera are diluted 100 times in PBS-0.05% Tween 20, and incubated on the nitrocellulose sheet for two hours at room temperature with gentle shaking, using a mini-blotter system (Miniprotean, Bio-rad code no 170-4017). After three repeated washing steps in PBS-0.05% Tween 20 for 5 min., the nitrocellulose sheet is incubated at room temperature for 1 hour under gentle shaking with the appropriate conjugate (biotinylated anti-human Ig antibodies, from sheep, Amersham code no RPN1003) diluted at 1/500 in the same washing buffer. The membrane is washed three times as previously, and incubated for 30 min with agitation using the streptavidin-peroxidase complex (Amersham code no 1051) diluted at 1/1000 in the washing buffer. After the last three repeated washing steps, the revelation occurs during the 20 min incubation time in a 50 ml solution containing 30 mg 4-chloro-1-naphtol (Sigma), 10 ml methanol, 40 ml of ultra-pure water, and 30 μl of H2O2. The staining is stopped while washing the membrane several times in distillated water. Results illustrated in FIGS. 6 and 7 show that all the 7 convalescents react against the major band of recombinant BASB041 protein at around 25-30 kDa. All of them react with around the same intensity, with slightly lower reactivity with patients 261979. In the right part of the western-blot, the reaction against the same 25-30 kD band is observed with the immunized mice sera, plus the band recognized at around 50 kDa.

Example 2

DNA Sequencing of the BASB043 Gene from Two N. meningitidis Strains.

A: BASB043 in N. meningitidis Serogroup B Strain ATCC13090.

The BASB043 gene of N. meningitidis strain ATCC 13090 is shown in SEQ ID NO:11. The translation of the BASB043 polynucleotide sequence, shown in SEQ ID NO:12, did not show any significant similarity to any known protein. The BASB043 polypeptide contains however a signal sequence characteristic of a lipoprotein, and could thus be inserted into the outer membrane of the bacterium.

The sequence of the BASB043 gene was further confirmed as follows. For this purpose, genomic DNA was extracted from 1010 cells of the N. meningitidis cells (strain ATCC 13090) using the QIAGEN genomic DNA extraction kit (Qiagen Gmbh), and 1 μg of this material was submitted to Polymerase Chain Reaction DNA amplification using primers lip7-01 (5′-ATG AAA AAA TAC CTT ATC CCT CTT TCC-3′) [SEQ ID NO:13] and lip7-02 (5′-TCA TTT CAA GGG CTG CAT-3′) [SEQ ID NO:14]. This PCR product was gel-purified and subjected to DNA sequencing using the Big Dye Cycle Sequencing kit (Perkin-Elmer) and an ABI 373A/PRISM DNA sequencer. DNA sequencing was performed on both strands with a redundancy of 2 and the full-length sequence was assembled using the SeqMan program from the DNASTAR Lasergene software package. The resulting DNA sequence turned out to be 100% identical to SEQ ID NO:11.

B: BASB043 in N. meningitidis Serogroup B Strain H44/76.

The sequence of the BASB043 gene was also determined in another N. meningitidis serogroup B strain, the strain H44/76. For this purpose, genomic DNA was extracted from the N. meningitidis strain H44/76 using the experimental conditions presented in the previous paragraph. This material (1 μg) was then submitted to Polymerase Chain Reaction DNA amplification using primers Lip7-01 and Lip7-02 specific for the BASB043 gene. The PCR amplicon was then submitted to DNA sequencing using the Big Dyes kit (Applied biosystems) and analyzed on a ABI 373/A DNA sequencer in the conditions described by the supplier. As a result, the polynucleotide sequence turned out to be 100% identical to SEQ ID NO:11.

Taken together, these data indicate strong sequence conservation of the BASB043 gene among the two N. meningitidis serogroup B strains.

Construction of Plasmid to Express Recombinant BASB043

A: Cloning of BASB043.

The NdeI and XhoI restriction sites engineered into the forward Lip7-Fm/p (5′-AGG CAG AGG CAT ATG AAA AAA TAC CTT ATC CCT CTT TCC ATT GCC-3′) ([SEQ ID NO:15]) and reverse Lip7-RCf/p (5′-AGG CAG AGG CTC GAG TTT CAA GGG CTG CAT CTT CAT CAC TTC-3′) ([SEQ ID NO:16]) amplification primers, respectively, permitted directional cloning of a BASB043 PCR product into the commercially available E. coli expression plasmid pET24b (Novagen, USA, kanamycin resistant) such that a mature BASB043 protein could be expressed as a fusion protein containing a (His)6 affinity chromatography tag at the C-terminus. The BASB043 PCR product was purified from the amplification reaction using silica gel-based spin columns (QiaGen) according to the manufacturers instructions. To produce the required NdeI and XhoI termini necessary for cloning, purified PCR product was sequentially digested to completion with NdeI and XhoI restriction enzymes as recommended by the manufacturer (Life Technologies). Following the first restriction digestion, the PCR product was purified via spin column as above to remove salts and eluted in sterile water prior to the second enzyme digestion. The digested DNA fragment was again purified using silica gel-based spin columns prior to ligation with the pET24b plasmid.

B: Production of Expression Vector.

To prepare the expression plasmid pET24b for ligation, it was similarly digested to completion with both NdeI and XhoI and then treated with calf intestinal phosphatase (CIP, ˜0.02 units/pmole of 5′ end, Life Technologies) as directed by the manufacturer to prevent self-ligation. An approximately 5-fold molar excess of the digested fragment to the prepared vector was used to program the ligation reaction. A standard ˜20 μl ligation reaction (˜16° C., ˜16 hours), using methods well known in the art, was performed using T4 DNA ligase (˜2.0 units/reaction, Life Technologies). An aliquot of the ligation (˜5 μl) was used to transform electro-competent BL21 DE3 cells according to methods well known in the art. Following a ˜2-3 hour outgrowth period at 37° C. in ˜1.0 ml of LB broth, transformed cells were plated on LB agar plates containing kanamycin (50 μg/ml. The antibiotic was included in the selection media to ensure that all transformed cells carried the pET24b plasmid (KnR). Plates were incubated overnight at 37° C. for ˜16 hours. Individual KnR colonies were picked with sterile toothpicks and used to “patch” inoculate fresh LB KnR plates as well as a ˜1.0 ml LB KnR broth culture. Both the patch plates and the broth culture were incubated overnight at 37° C. in either a standard incubator (plates) or a shaking water bath.

A whole cell-based PCR analysis was employed to verify that transformants contained the BASB043 DNA insert. Here, the ˜1.0 ml overnight LB Kn broth culture was transferred to a 1.5 ml polypropylene tube and the cells collected by centrifugation in a Beckman microcentrifuge (˜3 min., room temperature, ˜12,000×g). The cell pellet was suspended in ˜200 μl of sterile water and a ˜1011 aliquot used to program a −50 μl final volume PCR reaction containing both BASB043 forward and reverse amplification primers. Final concentrations of the PCR reaction components were essentially the same as those specified in example 2 except ˜5.0 units of Taq polymerase was used. The initial 95° C. denaturation step was increased to 3 minutes to ensure thermal disruption of the bacterial cells and liberation of plasmid DNA. An ABI Model 9700 thermal cycler and a 32 cycle, three-step thermal amplification profile, i.e. 95° C., 45 sec; 55-58° C., 45 sec, 72° C., 1 min., were used to amplify the BASB043 PCR fragment from the lysed transformant samples. Following thermal amplification, a ˜20 μl aliquot of the reaction was analyzed by agarose gel electrophoresis (0.8% agarose in a Tris-acetate-EDTA (TAE) buffer). DNA fragments were visualized by UV illumination after gel electrophoresis and ethidium bromide staining. A DNA molecular size standard (1 Kb ladder, Life Technologies) was electrophoresed in parallel with the test samples and was used to estimate the size of the PCR products. Transformants that produced the expected PCR product were identified as strains containing a BASB043 expression construct. Expression plasmid containing strains were then analyzed for the inducible expression of recombinant BASB043.

C: Expression Analysis of PCR-Positive Transformants.

For each PCR-positive transformant identified above, ˜5.0 ml of LB broth containing kanamycin (50 μg/ml) was inoculated with cells from the patch plate and grown overnight at 37° C. with shaking (˜250 rpm). An aliquot of the overnight seed culture (˜1.0 ml) was inoculated into a 125 ml erlenmeyer flask containing ˜25 ml of LB Kn broth and grown at 37° C. with shaking (˜250 rpm) until the culture turbidity reached O.D.600 of ˜0.5, i.e. mid-log phase (usually about 1.5-2.0 hours). At this time approximately half of the culture (˜12.5 ml) was transferred to a second 125 ml flask and expression of recombinant BASB043 protein induced by the addition of IPTG (1.0 M stock prepared in sterile water, Sigma) to a final concentration of 1.0 mM. Incubation of both the IPTG-induced and non-induced cultures continued for an additional ˜4 hours at 37° C. with shaking. Samples (˜1.0 ml) of both induced and non-induced cultures were removed after the induction period and the cells collected by centrifugation in a microcentrifuge at room temperature for ˜3 minutes. Individual cell pellets were suspended in ˜50 μl of sterile water, then mixed with an equal volume of 2× Laemelli SDS-PAGE sample buffer containing 2-mercaptoethanol, and placed in boiling water bath for ˜3 min to denature protein. Equal volumes (˜15 μl) of both the crude IPTG-induced and the non-induced cell lysates were loaded onto duplicate 12% Tris/glycine polyacrylamide gel (1 mm thick Mini-gels, Novex). The induced and non-induced lysate samples were electrophoresed together with prestained molecular weight markers (SeeBlue, Novex) under conventional conditions using a standard SDS/Tris/glycine running buffer (BioRad). Following electrophoresis, one gel was stained with commassie brilliant blue R250 (BioRad) and then destained to visualize novel BASB043 IPTG-inducible protein(s). The second gel was electroblotted onto a PVDF membrane (0.45 micron pore size, Novex) for ˜2 hrs at 4° C. using a BioRad Mini-Protean II blotting apparatus and Towbin's methanol (20%) transfer buffer. Blocking of the membrane and antibody incubations were performed according to methods well known in the art. A monoclonal anti-RGS (His) antibody, followed by a second rabbit anti-mouse antibody conjugated to HRP (QiaGen), was used to confirm the expression and identity of the BASB043 recombinant protein. Visualization of the anti-His antibody reactive pattern was achieved using either an ABT insoluble substrate or using Hyperfilm with the Amersham ECL chemiluminescence system.

Production of Recombinant BASB043

Bacterial Strain

A recombinant expression strain of E. coli BL21 DE3 containing a pET24b plasmid encoding BASB043 from N. meningitidis. was used to produce cell mass for purification of recombinant protein. The expression strain was cultivated on LB agar plates containing 50 μg/ml kanamycin (“Kn”) to ensure plasmid maintenance. For cryopreservation at −80° C., the strain was propagated in LB broth containing the same concentration of antibiotic then mixed with an equal volume of LB broth containing 30% (w/v) glycerol.

Media

The fermentation medium used for the production of recombinant protein consisted of 2×YT broth (Difco) containing 50 μg/ml Kn. Antifoam was added to medium for the fermentor at 0.25 ml/L (Antifoam 204, Sigma). To induce expression of the BASB043 recombinant protein, IPTG (Isopropyl β-D-Thiogalactopyranoside) was added to the fermentor (1 mM, final).

Fermentation

A 500-ml erlenmeyer seed flask, containing 50 ml working volume, was inoculated with 0.3 ml of rapidly thawed frozen culture, or several colonies from a selective agar plate culture, and incubated for approximately 12 hours at 37±1° C. on a shaking platform at 150 rpm (Innova 2100, New Brunswick Scientific). This seed culture was then used to inoculate a 5-L working volume fermentor containing 2×YT broth and both Kn antibiotic. The fermentor (Bioflo 3000, New Brunswick Scientific) was operated at 37±1° C., 0.2-0.4 VVM air sparge, 250 rpm in Rushton impellers. The pH was not controlled in either the flask seed culture or the fermentor. During fermentation, the pH ranged 6.5 to 7.3 in the fermentor. IPTG (1.0 M stock, prepared in sterile water) was added to the fermentor when the culture reached mid-log of growth (˜0.7 O.D.600 units). Cells were induced for 2-4 hours then harvested by centrifugation using either a 28RS Heraeus (Sepatech) or RC5C superspeed centrifuge (Sorvall Instruments). Cell paste was stored at −20 C until processed.

Purification

Imidazole and biotechnology grade or better reagents were all obtained from Ameresco Chemical, Solon, Ohio. Triton X-100 (t-Octylphenoxypolyethoxy-ethanol), Triton X-114, sodium phosphate, monobasic, and urea were reagent grade or better and obtained from Sigma Chemical Company, St. Louis, Mo. Dulbecco's Phosphate Buffered XhoIne (1×PBS) was obtained from Quality Biological, Inc., Gaithersburg, Md. Dulbecco's Phosphate Buffered XhoIne (10×PBS) was obtained from BioWhittaker, Walkersville, Md. Penta-His Antibody, BSA free was obtained from QiaGen, Valencia, Calif. Peroxidase-conjugated AffiniPure Goat Anti-mouse IgG was obtained from Jackson Immuno Research, West Grove, Penn. All other chemicals were reagent grade or better.

Ni-chelatin Sepharose Fast Flow resin was obtained from Pharmacia, Sweden. Precast Tris-Glycine 4-20% and 10-20% polyacrylamide gels, all running buffers and solutions, SeeBlue Pre-Stained Standards, MultiMark Multi-Colored Standards and PVDF transfer membranes were obtained from Novex, San Diego, Calif. SDS-PAGE Silver Stain kits were obtained from Daiichi Pure Chemicals Company Limited, Tokyo, Japan. Coomassie Stain Solution was obtained from Bio-Rad Laboratories, Hercules, Calif. Acrodisc® PF 0.2 m syringe filters were obtained from Pall Gelman Sciences, Ann Arbor, Mich. GD/X 25 mm disposable syringe filters were obtained from Whatman Inc., Clifton, N.J. Dialysis tubing 8,000 MWCO was obtained from BioDesign Inc. Od New York, Carmal New York. BCA Protein Assay Reagents and Snake Skin dialysis tubing 3,500 MWCO were obtained from Pierce Chemical Co., Rockford, Ill.

Extraction Protocol

Cell paste was thawed at room temperature for 30 to 60 minutes. Five to six grams of material was weighed out into a 50-ml disposable centrifuge tube. Recombinant BASB043 antigen was purified by extraction of cell membranes with 25 mM Tris-HCl containing 4M guanidine-HCl. The supernatent was applied to nickel-chelating Sepharose Fast Flow. The protein is afterwards eluted with 200 mM imidazole to affinity purify the histidine-tagged protein and yielded greater than 90% pure protein.

Binding of BASB043 to Nickel Affinity Resin

After extraction, the mixture was incubated to the nickel-chelating Sepharose Fast Flow and placed at room temperature with gentle agitation for one hour. After one hour, the nickel-chelating Sepharose Fast Flow is packed into an XK16 Pharmacia column, and eluted afterwards with 200 mM imidazole buffer to affinity purify the histidine tagged protein and yielded greater than 90% pure protein. The fraction was dialyzed against PBS (pH7.4) containing 0.1% of Triton and stored at −70 at a concentration of 500 μg/ml.

Final Formulation

BASB043 was formulated by dialysis overnight against, three changes of 0.1% Triton X-100 and 1×PBS, pH 7.4. The purified protein was characterized and used to produce antibodies as described below.

Biochemical Characterizations: SDS-PAGE and Western Blot Analysis

The recombinant purified protein was resolved on 4-20% polyacrylamide gels and electrophoretically transferred to PVDF membranes at 100 V for 1 hour as previously described (Thebaine et al. 1979, Proc. Natl. Acad. Sci. USA 76:4350-4354). The PVDF membranes were then pretreated with 25 ml of Dulbecco's phosphate buffered XhoIne containing 5% non-fat dry milk. All subsequent incubations were carried out using this pretreatment buffer.

PVDF membranes were incubated with a dilution of anti-His tail antibodies for 1 hour at room temperature. PVDF membranes were then washed twice with wash buffer (20 mM Tris buffer, pH 7.5, containing 150 mM sodium chloride and 0.05% Tween-20). PVDF membranes were incubated with 25 ml of a 1:5000 dilution of peroxidase-labeled species specific conjugate for 30 minutes at room temperature. PVDF membranes were then washed 4 times with wash buffer, and were developed with 3-amino-9-ethylcarbazole and urea peroxide as supplied by Zymed (San Francisco, Calif.) for 10 minutes each.

The results of an SDS-PAGE (FIG. 8) show a protein about 16 kDa purified to greater than 90% and that is reactive to an anti-RGS (His) antibody by western blots (FIG. 8) of the SDS-PAGE.

Immunization of Mice with Recombinant BASB043

Partially purified recombinant BASB043 protein expressed in E. coli has been injected three times in Balb/C mice on days 0, 14 and 28 (10 animals/group). Animals were injected by the subcutaneous route with around 5 μg of antigen in two different formulations: either adsorbed on 100 μg AlPO4 or formulated in SBAS2 emulsion (SB62 emulsion containing 5 μg MPL and 5 μg QS21 per dose). A negative control group consisting of mice immunized with the SBAS2 emulsion only has also been added in the experiment. Mice were bled on days 28 (14 days Post II) and 35 (7 days Post III) in order to detect specific anti-BASB043 antibodies. Specific anti-BASB043 antibodies were measured by western-blotting on pooled sera (from 10 mice/group) from both formulations (on day 7 Post III only), using recombinant protein (part of the gel) and Neisseria meningitidis B strains.

Recognition of the BASB043 epitopes on different Neisseria meningitidis B strains by western-blotting

In this test, immunized mice sera (pooled) have been tested by western-blotting for recognition of the BASB043 epitopes on seven different Neisseria meningitidis B strains: H44/76 (B:15:P1.7, 16, lineage ET-5), M97 250687 (B:4:P1.15), BZ10 (B:2b:P1.2, lineage A4), BZ198 (B:NT*: -, lineage 3), EG328 (B:NT*, lineage ST-18), NGP165 (B:2a:P1.2, ET 37 cluster) and the ATCC 13090 (B:15:P1.15) Neisseria meningitidis B strains, as well as on partially purified recombinant BASB043 protein. (*: NT: Not Typed).

Briefly, 10 μl (>108 cells/lane) of each sample treated with sample buffer (10 min at 95° C.) are put into a SDS-PAGE gradient gel (Tris-glycine 4-20%, Novex, code no EC60252). Electrophoretic migration occurs at 125 volts for 90 min. Afterwards, proteins are transferred to nitrocellulose sheet (0.45 μm, Bio-rad code no 162-0114) at 100 volts for 1 hour using a Bio-rad Trans-blot system (code no 170-3930). Filter was blocked with PBS-0.05% Tween 20 overnight at room temperature, before incubation with the mice sera containing the anti-BASB043 antibodies from both AlPO4 and SBAS2 formulations. These sera are diluted 100 times in PBS-0.05% Tween 20, and incubated on the nitrocellulose sheet for two hours at room temperature with gentle shaking, using a mini-blotter system (Miniprotean, Bio-rad code no 170-4017). After three repeated washing steps in PBS-0.05% Tween 20 for 5 min., the nitrocellulose sheet is incubated at room temperature for 1 hour under gentle shaking with the appropriate conjugate (biotinylated anti-mouse Ig antibodies from sheep, Amersham code no RPN1001) diluted at 1/500 in the same washing buffer. The membrane is washed three times as previously, and incubated for 30 min with agitation using the streptavidin-peroxidase complex (Amersham code no 1051) diluted at 1/1000 in the washing buffer. After the last three repeated washing steps, the revelation occurs during the 20 min incubation time in a 50 ml solution containing 30 mg 4-chloro-1-naphtol (Sigma), 10 ml methanol, 40 ml PBS, and 30 μl of H2O2. The staining is stopped while washing the membrane several times in distillated water.

Results illustrated in FIGS. 9 and 10 show that all strains tested present the expected bands around 20 kDa (major), 25 and 35-40 kDa (minors), which are recognized at the same level in all of the Neisseria meningitidis B strains tested. This means that the BASB043 protein is expressed in probably all Neisseria meningitidis B strains. In both figures, the recombinant BASB043 protein is also clearly recognized by mice sera at the same MW (second lane after the MW). This BASB043 protein is not recognized anymore on E. coli preparation.

Presence of Anti-BASB043 Antibodies in Sera from Convalescent Patients.

In this test, several convalescent sera have been tested by western-blotting for recognition of the purified recombinant BASB043 protein.

Briefly, 5 μg of partially purified BASB043 Neisseria meningitidis B protein are put into a SDS-PAGE gradient gel (4-20%, Novex, code no EC60252) for electrophoretic migration. Proteins are transferred to nitrocellulose sheet (0.45 μm, Bio-rad code no 162-0114) at 100 volts for 1 hour using a Bio-rad Trans-blot system (code no 170-3930). Afterwards, filter is blocked with PBS-0.05% Tween 20 overnight at room temperature, before incubation with the human sera. The following convalescent sera were tested: patients #261469, 261979, 261324, 261732, 262117 and 261659. These sera are diluted 100 times in PBS-0.05% Tween 20, and incubated on the nitrocellulose sheet for two hours at room temperature with gentle shaking, using a mini-blotter system (Miniprotean, Bio-rad code no 170-4017). After three repeated washing steps in PBS-0.05% Tween 20 for 5 min., the nitrocellulose sheet is incubated at room temperature for 1 hour under gentle shaking with the appropriate conjugate (biotinylated anti-human Ig antibodies, from sheep, Amersham code no RPN1003) diluted at 1/500 in the same washing buffer. The membrane is washed three times as previously, and incubated for 30 min with agitation using the streptavidin-peroxidase complex (Amersham code no 1051) diluted at 1/1000 in the washing buffer. After the last three repeated washing steps, the revelation occurs during the 20 min incubation time in a 50 ml solution containing 30 mg 4-chloro-1-naphtol (Sigma), 10 ml methanol, 40 ml of ultra-pure water, and 30 μl of H2O2. The staining is stopped while washing the membrane several times in distillated water.

Results illustrated in FIGS. 11 and 12 show that all the 6 convalescents react against the major band of recombinant BASB043 protein at around 20 kDa. Human sera recognize only this band while mice sera recognize the three major bands of BASB043. All of these human convalescent react with a very high intensity, except for convalescent no 262117 who shows a lower reactivity. In the right part of the western-blot, the reaction against the same 25-30 kD band is observed with the immunized mice sera, plus the band recognized at around 50 kDa. Few bands at a lower MW are also observed. Few leaks also are visible in FIG. 11.

+ Open protocol
+ Expand
4

Quantitative Analysis of Fermented Seafood Condiments

Check if the same lab product or an alternative is used in the 5 most similar protocols
Chemicals γ-Glutamyl-valyl-glycine was chemically synthesized as previously reported (Ohsu et al., 2010) . The stable isotope of 15 N-uniformly labeled L-Arg (Arg-UN) was purchased from Isotec (Tokyo, Japan). An AccQ Fluor reagent kit was acquired from Waters (Milford, MA, USA). HPLC grade acetonitrile (Junsei Chemicals Co., Ltd., Osaka, Japan) and formic acid (99%; Wako Pure Chemical Industries Ltd., Osaka, Japan) were used for the mobile phase.
Deionized water was prepared using a Milli-Q system (Millipore, Billerica, MA, USA). Sample preparation and derivatization procedure A sample of Bagoong (10.29 g) or Xiajiang (10.06 g) was added to 100 mL of deionized water, and the solution was filtered through a 0.45 μm membrane filter (GD/X Syringe Filters; Whatman PLC, Maidstone, UK), to remove any insoluble matter. The filtered solutions were further treated using an Amicon Ultra Centrifugal Filter Device (regenerated Cellulose 10,000 MWCO, Millipore) at 7,500 g for 15 min at 4℃. A sample of Terasi (5.02 g) was added to 50 mL of 0.012 N hydrochloric acid aqueous solution, and stirred for 20 min on a magnetic stirrer. Next, a 50-mL aliquot was centrifuged at 5,000 g for 15 min at 4℃, and the resulting supernatant was filtered through a 0.45 μm membrane filter (GD/X Syringe Filters). The filtrate was further treated using an Amicon Ultra Centrifugal Filter Device at 7,500 g for 15 min at 4℃. The Finally, the resulting 50-μL solutions were subsequently transferred into 1.5-mL microtubes, vortexed and heated at 55℃ for 10 min on a block-heater. After cooling to room temperature, 100 μL of 0.1% aqueous formic acid was added to the reaction mixture.
Apparatus The analysis of γ-Glu-Val-Gly after derivatization was performed using an LC/MS/MS system according to the method reported previously (Kuroda et al., 2013) . An Agilent 1200
series HPLC system (Agilent Technologies, Santa Clara, CA, USA) equipped with a binary pump, a degasser, an auto-sampler, General composition analysis Moisture levels were analyzed by measuring the change in weight after drying at 105℃ for 5 h.
Crude protein content was calculated by multiplying the total nitrogen content by 6.25. Total nitrogen content was determined by the micro-Kjeldahl method, while the crude fat content was determined by the Soxhlet extraction method using diethyl ether as the solvent. Ash levels were determined from the weight after heating at 550℃ for 16 h. Sodium content was determined through atomic absorption spectrochemical analysis using a Spectro AA240FS spectrometer (Varian Technologies Japan Ltd., Tokyo, Japan).
+ Open protocol
+ Expand
5

Caco-2 Cell Culture and Monolayer Characterization

Check if the same lab product or an alternative is used in the 5 most similar protocols
Caco-2 cells were cultured as described with some modifications [35 (link)]. Cells (passage numbers 41–51) were grew in 25 cm2 plastic flasks at 37 °C in a humidified atmosphere with 5% CO2 in high glucose DMEM with 20% (v/v) heat-inactivated FBS, 1% L-glutamine, 1% non-essential amino acids, 20 mmol/L HEPES, 100 U/ml penicillin and 100 μg/ml streptomycin (pH 7.4). Once the flasks reached 80% confluency, the cells were split and seeded at a density of 1.25 × 104 cell/cm2 onto polycarbonate micropore membranes (0.4 μm pore size, 12 mm diameter) inserted into transwells. Cells were fed every other day and were used 21 days after seeding.
Delipidized FBS was prepared according to the method of Gibson et al. [36 (link)]. In essence, 20 g of thixotropic gel powder (Cab-o-sil, Fibre Glast) was added to 1 L FBS and stirred overnight at 4 °C. The mixture was then centrifuged at 12,000×g and 4 °C for 1 h. The supernatant was sequentially filtered through a 0.20 μm filter (25 mm, GD/X, Whatman, Inc., NJ, USA) and kept at 4 °C until being used. The composition and preparation of mixed micellar solutions were performed according to previous studies [6 (link)]. Micellar solutions with 0.1% (v/v) DMSO were as follows: 2 μCi/mL [1,2-3H (N)]-cholesterol, 100 μmol/L cholesterol, 1 mmol/L oleic acid for control or 0.1, 0.5, 1.0 mmol/L fatty acid (palmitic acid (PAM, C16:0) / oleic acid (OLA, C18:1) / linoleic acid (LNA, C18:2) / arachidonic acid (ARA, C20:4) / eicosapentaenoic acid (EPA, C20:5) or docosahexaenoic acid (DHA, C22:6), 0.5 mmol/L monoolein, 6.6 mmol/L sodium taurocholate, and 0.1 mmol/L soy phospatidylcholine (PtdCho). The specific activity of [1,2-3H (N)]-cholesterol in this micellar solutions was 4.44 × 107 dpm/μmol. The tracer with the same specific activity was used in the cholesterol uptake and transport experiments. To prepare the micellar solution, the appropriate amounts of above mentioned reagents were dissolved in culture medium (uptake experiment) or HBSS buffer (transport experiment), and the concentrations of fatty acids were indicated in figure legends and table notes. The micellar solutions were subjected to sonication, then passed through a 0.20 μm filter (25 mm, GD/X, Whatman, Inc., NJ, USA) and kept at 37 °C until being used.
In cholesterol transport experiments, Caco-2 monolayer model was established in 12-well transwell inserts, as monitored by morphology, alkaline phosphatase activity and monolayer permeability according to the method of Hubatsch [37 (link)]. Morphology of Caco-2 cell monolayer during and after differentiation was monitored by scanning electron microscope and transmission electron microscopy. Cells after the 21-day culture were fixed in 2.5% glutaraldehyde treatment for 2 h, and then post-fixed for 30 min in 1% osmium tetroxide buffer and incubated in freshly made 1% carbohydrazide for 30 min. The fixed cells were rinsed three times with distilled water for over 15 min each time. The bottom of cell culture dishes was cut to fit the critical point dryer. Then, after a series of alcohol dehydration, dried in critical point dryer and sputter coat with 1-2 nm gold-palladium. Then, the cell ultrastructure was observed under scanning electron micrograph (JSM-6390/LV). For transmission electron microscopy, cells were fixed in 2.5% glutaraldehyde solution for 4 h and then post-fixed for 2 h in 1.33% osmium tetroxide buffered with 0.1 mol/L cacodylate. Then after a series of alcohol dehydration, propylene oxide/resin 2:1 infiltration, resin embedding and sectioning, the cell ultrastructure was observed under transmission electron microscopy (Hitachi H-7100). Alkaline phosphatase activity of the Caco-2 monolayer was measured using the Alkaline Phosphatase Activity Assay Kit (CBA-301, Cell Biolabs, Inc., CA, USA). The integrity of each monolayer of differentiated cells was monitored by Papp value of lucifer yellow and the transepithelial electrical resistance (TEER) with a Millicel ERS-2 voltmeter (Millipore, MA, USA), which was calculated as in Eq. (1). TEERΩcm2=TEERΩTEERbackgroundΩ×areacm2
In Eq. (1), TEER (Ω) is the electrical resistance across the Caco-2 monolayer directly read from the ERS-2 epithelial voltmeter, the TEERbackground (Ω) is the electrical resistance across the insert only (without cells) and the area (cm2) is the area of the insert, 1.12 cm2.
+ Open protocol
+ Expand
6

Solubility and Dissolution of Gabapentin Enacarbil

Check if the same lab product or an alternative is used in the 5 most similar protocols
Commercially available gabapentin enacarbil ER tablets 300 mg (Regnite ® tablets 300 mg, Astellas Pharma Inc., Tokyo, Japan, lot L001) were purchased from the Japanese market. Gabapentin enacarbil ER tablets are a wax matrix-type formulation containing glycerin fatty acid ester, with a tablet size of 15.1×8.0 mm. Gabapentin enacarbil powder was produced by Astellas Pharma Inc. (lot 1001140G). FaSSIF/FeSSIF/FaSSGF powder (lot 01-1504-05NP) and FaSSIF-V2 powder (lot 02-1405-09) were purchased from Biorelevant.com Ltd. (London, U.K.). Acetic acid, acetonitrile, glycerol monooleate, hydrochloric acid solution (1 mol/L HCl), maleic anhydrate, phosphoric acid, potassium dihydrogen phosphate, sodium acetate, sodium chloride, sodium hydroxide pellets and sodium hydroxide solution (1 mol/L NaOH) were purchased from Kanto Chemical Co., Inc. (Tokyo, Japan). D(+)-Glucose was purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan (FeSSCoF). The compositions and preparation of these biorelevant dissolution media have been described previously. 14, (link)15) (link) Solubility of Gabapentin Enacarbil The solubility of gabapentin enacarbil was measured in the dissolution media. One Regnite ® tablets 300 mg was added to 20 mL of each biorelevant dissolution medium. The samples were shaken at approximately 200 shakes/min with a stroke length of 50 mm for 24 h at room temperature and subsequently filtered through a 0.45-µm polyvinylidene difluoride (PVDF) membrane (What-man™ 13 mm GD/X, GE Healthcare UK Limited, Buckinghamshire, U.K.). The filtrate was immediately diluted with the mobile phase and analyzed by HPLC. Because they contain milk as a major component, FeSSGF middle samples cannot be filtered through 0.45-µm-sized pores, and filters with pore sizes of 2.7-µm (Whatman™ 25 mm Glass Microfiber GF/D) were used instead. FeSSGF middle filtrates were subsequently mixed well with the same volume of acetonitrile and the mixture was centrifuged at 16176×g for 5 min. The supernatant was analyzed by HPLC. All solubility measurements were conducted in duplicate.
In Vitro Dissolution Testing Three different devices were used to perform in vitro dissolution experiments: a paddle apparatus (USP Apparatus 2), the BioDis apparatus (USP Apparatus 3), and a flow-through cell apparatus (USP Apparatus 4).
Paddle Experiments A NTR-6400 type paddle dissolution apparatus (Toyama Sangyo Co., Ltd., Osaka, Japan) was used in this study. The dissolution media used were 300 mL of FaSSGF, or 500 mL of FeSSGF middle , FaSSIF-V2 or FeSSIF-V2 per vessel. Two different paddle revolutions at 50 or 100 rpm were applied. The temperature of the dissolution media in the vessels was maintained at 37±0.5°C throughout each test run. Samples (approximately 5 mL) were taken at 30, 60, 90, 120, 180, 240, 360, 480 and 1440 min, using a stainless cannula and plastic syringe. Samples were immediately filtered through a syringe filter of 0.45-µm PVDF membrane (Whatman ™ 13 mm GD/X) into test tubes after discarding the first 2 mL of filtrate. Filtered solutions and the same volume of acetonitrile comprised samples for HPLC analysis. FeSSGF middle samples were pretreated using the same procedure as in the solubility assay.
+ Open protocol
+ Expand
7

Fungal Metabolite Extraction and Characterization

Check if the same lab product or an alternative is used in the 5 most similar protocols
The fungus was isolated using a soil dilution plate method directly from soil collected from the suburb of Beijing city, China and the isolate was identified to species as G. reesii Baran. A culture is maintained in the Institute of Microbiology, Chinese Academy of Sciences, China as isolate Za-130 (CGMCC No.2632 ). One-weekold G. reesii cultures on CMA plates (60 × 15 mm) were homogenized into Czapek-Dox broth medium (1 CMA plate/500 ml flask containing 125 ml Czapek-Dox broth) and incubated at 28°C on a shaker (180 rpm) for 5 days. After incubation, the culture broth was centrifuged at 13,700 g for 20 min, and the supernatant was sequentially passed through syringe filters designed for viscous samples containing particulates (GD/X series 1.0 μm GF/B and 0.45 μm GMF filters, Whatman, Clifton, NJ) and then sterile-filtered (GD/X sterile 0.2 μm PES filter, Whatman). The filtrates were used at concentrations of 1× solution (the original filtrate preparation) and diluted to -5× (1 part filtrate to 4 parts water), -10× (1 part filtrate to 9 parts water) by sterile water and condensed to +5× solution (a solution 5 times as concentrated as the 1x solution and +10× (a solution 10 times as concentrated as the 1 × solution) in vacuum at 40°C using a rotary evaporator.
+ Open protocol
+ Expand
8

Antibody Purification via Protein A Chromatography

Check if the same lab product or an alternative is used in the 5 most similar protocols
Seventeen IgG1 λ and 2 IgG1 κ antibodies used in this study were expressed by the commercially available mammalian expression systems; Free Style 293-F (Life Technologies) and CHO K1SV GS system (Lonza) were used for the transient and stable expression, respectively. The cultured medium expressing IgG was prepared based on the standard procedure provided by the manufacturers.
The expressed antibodies were purified by the chromatography system AKTA explorer 100 (GE Healthcare). The protein A column with the column volume (CV) of 5 mL (HiTrap MabSelect SuRe, GE Healthcare) was connected to the purification system. The pH working range of the column is from 3 to 1225 . After equilibrating the column with PBS pH 7.2 (Life Technologies), the cultured medium was applied to the system. The flow rate was maintained at CV/min. The volume of cultured medium in one purification batch was in the range of 480–1920 mL (see Supplementary Table 1 for details). The column was washed with PBS pH 7.2 for 6 CV. For the alkaline washed samples, the additional alkaline wash was performed with the 100 mM sodium carbonate, pH 11.0 solution for 6 CV and the subsequent neutralisation with PBS pH 7.2 for 8 CV. We used 100 mM sodium carbonate for pH 10.0 and pH 10.5 buffers. Tris–HCl (100 mM), Glycine–HCl (100 mM), and disodium hydrogen phosphate (100 mM) were used for pH 9.0, 9.5, and 11.5 buffers, respectively. To elute IgG, the 100 mM Glycine–HCl buffer pH 3.2 was applied to the column. The 1.0 M Tris, pH 8.8 buffer was added in advance to the collection tubes to neutralise the eluted solution immediately. The MabSelect SuRe columns used in this study were reutilized after cleaning with 0.5 M NaOH which was a recommended condition for cleaning and sanitization25 . Each column was not used more than 10 times. All antibody samples were dialyzed to PBS pH 7.2 or 50 mM citrate, 150 mM NaCl, pH 6.3 buffer using a dialysis bag, Slide-A-Lyzer G2, 1,000 Da molecular weight cut-off (Thermo Scientific). Finally, the samples were filtered using a 0.45 µm PES filter GD/X (GE Healthcare). The concentrations of samples were determined with NanoDrop ND-1000 (Thermo Scientific) based on absorption at 280 nm (E1%280 = 13.7). To compare % recovery of each IgG, the concentrations of IgGs in the representative medium were determined using Bio-Layer Interferometry by BLItz (ForteBIO).
+ Open protocol
+ Expand
9

Toho-1 β-Lactamase Expression and Purification

Check if the same lab product or an alternative is used in the 5 most similar protocols
Uniformly 2H-15N labeled and 2H-13C-15N labeled Toho-1 β-lactamase were expressed and purified as described previously with some modifications (Tomanicek et al. 2010 (link); Langan et al. 2016 (link)). Briefly, BL21 E. coli cells harboring the Toho-1 β-lactamase expression plasmid were cultured and progressively adapted to 2H2O in minimal medium containing D-glucose in a shaking incubator set to 250 rpm and 303 K. Once adapted to 2H2O, the cells were transferred to a modified 2H2O minimal medium containing 5.4 g/l 2H-13C-D-glucose (Cambridge Isotope Labs) 2 g/l 15NH4SO4 (Sigma Aldrich), 15.8 g/L Na2HPO4, and 4.8 g/l KH2PO4. After growth in the triple-labeled medium, the culture was scaled up to 500 ml split equally between two 2.8 l baffled Fernbach flasks for sufficient aeration. After the culture reached OD600~1.9, IPTG was added to 0.5 mM. After 6 hours of induction, the cells were harvested by centrifugation, and the pellets were stored at 193 K until further use. For purification, the frozen cells were thawed and resuspended in lysis buffer (50 mM MES pH 6.5, 1 mM EDTA) containing SigmaFast™ EDTA-free protease inhibitor cocktail tablets (Sigma Aldrich). The cells were then lysed on ice by sonication with a Branson 450D Digital Sonifier (Emerson Industrial Automation, St. Louis, MO, USA) and clarified by centrifugation at 34000 x g for 45 min at 277 K. Following centrifugation, the supernatant was filtered through 1.6 μm and 0.45 μm GD/X syringe filters (GE Healthcare, Pittsburgh, PA, USA) as well as diluted with 20 mM MES, pH 6.5 buffer. The crude protein solution was then loaded onto a 5 ml HiTrap SP Sepharose FF column (GE Healthcare) that had been previously equilibrated with Buffer A (20 mM MES, pH 6.5). A linear gradient of Buffer B (20 mM MES, 300 mM NaCl pH 6.5) was used to elute the protein at approximately 20-30 mM NaCl at room temperature. Using UV absorbance measurements and SDS-PAGE analysis, fractions containing pure protein were selected, pooled, and concentrated using a 10 K MWCO Vivaspin 15R concentrator (Sartorius, Gottingen, Germany). Concentrated protein was loaded onto a 120-ml HiPrep Sephacryl S-100 HR gel filtration column (GE Healthcare) pre-equilibrated with Buffer A. Using UV absorbance and SDS-PAGE analysis, fractions containing pure protein were again selected, pooled, and concentrated using a 10 K MWCO Vivaspin 15R concentrator (Sartorius). The protein concentration was estimated using UV absorbance.
+ Open protocol
+ Expand
10

Partial Purification of ALS Protein

Check if the same lab product or an alternative is used in the 5 most similar protocols
ALS protein was partially purified at below 4 °C as follows.
Approximately 150 g of wild-type or BS-resistant cells, which were prepared by liquid culture without BS, were homogenized in three volumes of 100 mM potassium phosphate buffer (pH 7.5) containing 20% (v/v) glycerol, 0.5 mM thiamin pyrophosphate (TPP), 10 mM flavin adenine dinucleotide (FAD), 0.5 mM MgCl 2 , and 15 g of polyvinylpolypyrrolidone (buffer-1) using Hiscotron homogenizer (Nichion-Irikakikai-Seisakujo). The homogenate was filtered through nylon gauze, and then centrifuged at 15,000ϫg for 20 min. Ammonium sulfate was added to the supernatant to 50% saturation, and then allowed to stand on ice for approximately 1 hr. This homogenate was again centrifuged at 15,000ϫg for 20 min, and then the precipitate was dissolved in approximately 30 ml of 10 mM Tri-HCl buffer (pH 7.5) containing 20% (v/v) glycerol, 0.5 mM TPP and 0.5 mM MgCl 2 (buffer-2). The solution was again centrifuged at 15,000ϫg for 20 min, and then the supernatant was applied to a Sephadex G-25 (GE Healthcare Bio-Sciences KK) column. Approximately 40 ml of the pass-through fraction was collected as a crude enzyme solution. The protein concentration of this solution was measured by the Bradford method. This solution was then filtered through a Whatman 25 mm GD/X Sterile Syringe Filter, and applied to three verticallyconnected HiTrap Q columns (GE Healthcare Bio-Sciences KK) using an FPLC (GE Healthcare Bio-Sciences KK). After proteins were adsorbed, the columns were washed with buffer-2. The adsorbed protein was then eluted using 150 ml of buffer-2 with a linear concentration gradient (0 to 0.4 M) of KCl. The eluate was fractionated into 5 ml each in test tubes including 0.5 ml of buffer-2 containing 20 mM sodium pyruvate to stabilize ALS.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!

  Request a quote for « Gd x »