Example 1
Under an argon atmosphere, in a 10 mL Schlenk tube were placed HO-U-SUC-TOB (82.2 mg, 66.0 μmol) and MeOC(O)-TOB (100 mg, 106 μmol) and they were dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.8 mg, 197 μmol) and U-CE phosphoramidite (150 mg, 197 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1 hr. To the reaction solution was added 2,2,2-trifluoroethanol (70.3 μL, 983 μmol), and the mixture was stirred at room temperature for 15 min. After stirring, PADS (178 mg, 590 μmol) was added and the mixture was stirred at room temperature for 2 hr. 5-Methoxyindole (193 mg, 1.31 mmol) and trifluoroacetic acid (45.2 μL, 590 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (85.5 μL, 649 μmol) was added, acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (2′-O-methyl-uridine-3′-[O-(2-cyanoethyl)]phosphorothionyl 2′-O-methyl-uridin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (197 mg, yield 95%).
(1) Preparation of Reaction Solution
Under an argon atmosphere, HO-dT-SUC-TOB (100 mg, 80.8 μmol) and MeOC(O)-TOB (100 mg, 106 μmol) were dissolved in dehydrated dichloromethane (4.0 mL). To this solution was added a mixture of dG-CE phosphoramidite (204 mg, 242 μmol) and 5-benzylthio-1H-tetrazole (46.5 mg, 242 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 30 min. Completion of the reaction was confirmed by thin layer chromatography (dichloromethane/methanol=10/1 (volume ratio)), a quencher in the kind and amount shown in Table 1 was added and the mixture was stirred at room temperature for 30 min. Then, an oxidant shown in Table 1 (254 μmol, 1.05 molar equivalents relative to phosphoramidite monomer) was added and the mixture was stirred at room temperature for 1 hr to prepare a reaction solution.
(2) Preparation of Test Solution (Pre-Treatment for Analysis)
The obtained reaction solution (50 μL) was dispensed to a 1.5 mL vial, diluted with tetrahydrofuran (450 μL), to which DBU (20 μL) was added and the mixture was stirred for 30 sec to prepare a test solution.
(3) Analysis
The obtained test solution was measured by mass spectrometry using LC-TOF MS (Agilent6230). The amount of the byproduct was calculated by the following formula based on the abundance of each compound observed (object compound and byproduct).
amount(%) of branch product=(abundance of branch product/abundance of object compound)×100amount(%) of phosphoric acid triester cleavage product=(abundance of phosphoric acid triester cleavage product/abundance of object compound)×100
As used herein, the object compound refers to the object oligonucleotide contained in the reaction solution, the branch product refers to a byproduct produced by falling off of an amino-protecting group of nucleic acid base of the object compound and binding of the amino group and a monomer, and the phosphoric acid triester cleavage product refers to a byproduct produced by cleavage of phosphoric acid triester of the object compound. The results are shown in Table 1.
As shown in Table 1, when CSO was used as an oxidant and morpholine, tetrahydrofurfuryl alcohol, diethylene glycol or ethylene glycol was used as a quencher, production of a branch product and a phosphoric acid triester cleavage product was confirmed to have been effectively suppressed.
(1) Synthesis of Dimer
Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 500 μmol) and Ac-TOB (619 mg, 648 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added methanol (608 μL, 15.0 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (340 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (345 μL, 4.50 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (654 μL, 4.95 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (762 mg, yield 95%).
(2) Synthesis of Trimer
Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (762 mg, 473 μmol) obtained in the above-mentioned (1), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (273 mg, 1.42 mmol) and dA-CE phosphoramidite (1.22 g, 1.42 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added methanol (575 μL, 14.2 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (321 mg, 1.56 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.39 g, 9.46 mmol) and trifluoroacetic acid (326 μL, 4.26 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.
Since Reference Example 1 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.
Example 2
(1) Synthesis of Phosphorothioate Dimer Wherein 3′-Hydroxy Group is Protected by Anchor
Under an argon atmosphere, in a 200 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 0.500 mmol) and AcO-TOB (773 mg, 0.808 mmol) and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2,2,2-trifluoroethanol (1.07 mL, 15.0 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, a mixture of acetic acid (172 μL, 3.00 mmol) and 2,4,6-trimethylpyridine (594 μL, 4.50 mmol) was further added, and the mixture was stirred for 15 min at room temperature. DDTT (340 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (689 μL, 9.00 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (1.31 mL, 9.90 mmol) was added, acetonitrile (150 mL) was added to the reaction solution and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (789 mg, yield 98%).
(2) Synthesis of Phosphorothioate 19-Mer Wherein 3′-Hydroxy Group is Protected by Anchor
An operation similar to that in the above-mentioned (1) was further repeated 18 times to give a 19-mer (deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-benzoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-benzoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) (2.78 g).
(3) Synthesis of Phosphorothioate 20-Mer Wherein 3′-Hydroxy Group is Protected by Anchor and 5′-Hydroxy Group is Protected by DMTr Group
Under an argon atmosphere, in a 200 mL four-necked flask was placed the 19-mer (2.78 g) obtained in the above-mentioned (2), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (287 mg, 1.49 mmol) and dT-CE phosphoramidite (1.11 g, 1.49 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. DDTT (338 mg, 1.64 mmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, acetonitrile (150 mL) was added to the reaction solution and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a 20-mer (5′-O-(4,4′-dimethoxytrityl)-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-acetyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-acetyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-acetyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) as a white solid (2.79 g).
(4) Removal of DMTr Group
Under an argon atmosphere, in a 100 mL two-necked flask was placed the 20-mer (1.00 g) obtained in the above-mentioned (3) and it was dissolved in dehydrated dichloromethane (10 m). 5-Methoxyindole (245 mg, 1.66 mmol) and trifluoroacetic acid (100 μL, 1.31 mmol) were added and the mixture was stirred at room temperature for 1.5 hr, and neutralized with 2,4,6-trimethylpyridine (190 μL, 1.44 mmol). Acetonitrile (150 mL) was added, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a 20-mer wherein the DMTr group was removed (deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-acetyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-acetyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-acetyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) as a white solid (867 mg).
(5) Deprotection
A mixture of the 20-mer (20 mg) obtained in the above-mentioned (4) and 30 wt % aqueous ammonia (5.00 mL) was placed in an autoclave and heated at 55° C. for 16 hr and cooled to room temperature. Insoluble material in the reaction solution was removed by a syringe filter (Whatman 25 mm GD/X PVDF 0.45 μm) and the filtrate was freeze-dried to give the object deoxythymidine-3′-phosphorothionyl-deoxycytidine-3′-phosphorothionyl-deoxycytidine-3′-phosphorothionyl-deoxycytidine-3′-phosphorothionyl-deoxyguanosine-3′-phosphorothionyl-deoxycytidine-3′-phosphorothionyl-deoxycytidine-3′-phosphorothionyl-deoxythymidine-3′-phosphorothionyl-deoxyguanosine-3′-phosphorothionyl-deoxythymidine-3′-phosphorothionyl-deoxyguanosine-3′-phosphorothionyl-deoxyadenosine-3′-phosphorothionyl-deoxycytidine-3′-phosphorothionyl-deoxyadenosine-3′-phosphorothionyl-deoxythymidine-3′-phosphorothionyl-deoxyguanosine-3′-phosphorothionyl-deoxycytidine-3′-phosphorothionyl-deoxyadenosine-3′-phosphorothionyl-deoxythymidine-3′-phosphorothionyl-deoxythymidine.
HPLC (WATERS XBridge™ C18 2.5 μm 4.6×75 mm column, flow rate 1.0 mL/min, 8 mM TEA+100 mM HFIP, MeOH, gradient: 0-10 min; 5 to 60%, λ=260 nm):Rt=6.87 min (83.3 area %); TOF/MS: 6646.05
(1) Preparation of Reaction Solution
Under an argon atmosphere, HO-dT-SUC-TOB (100 mg, 80.8 mol) was dissolved in dehydrated dichloromethane (4.0 mL), a mixed solution of rAOMe(Bz)-CE phosphoramidite (215 mg, 242 mol) and 5-benzylthio-1H-tetrazole (46.5 mg, 242 μmol) in dehydrated acetonitrile (0.5 mL) was added, and the mixture was stirred at room temperature for 1 hr. Completion of the reaction was confirmed by thin layer chromatography (dichloromethane/methanol=10/1 (volume ratio)), a quencher in the kind and amount shown in Table 2 was added and the mixture was stirred at room temperature for 30 min. Then, CSO (58.2 mg, 254 μmol) was added and the mixture was stirred at room temperature for 1 hr. Furthermore, to the reaction solution were added 5-methoxyindole (238 mg, 1.62 mmol) and trifluoroacetic acid (92.5 mL, 1.21 mmol) and the mixture was stirred at room temperature for 18 hr to prepare a reaction solution.
(2) Preparation and Analysis of Test Solution
In the same manner as in Experimental Example 1, the prepared test solution was measured by mass spectrometry and the amount of the byproduct was calculated by the following formula based on the abundance of each compound observed (object compound and byproduct).
amount(%) of+1monomer product=(abundance of+1monomer product/abundance of object compound)×100amount(%) of base-part deprotected product=(abundance of base-part deprotected product/abundance of object compound)×100
As used herein, the +1 monomer product refers to a byproduct produced by binding of one redundant monomer to the object compound, and the base-part deprotected product refers to a byproduct produced by falling off of an amino-protecting group of nucleic acid base of the object compound. The results are shown in Table 2.
As shown in Table 2, when tetrahydrofurfuryl alcohol, diethylene glycol or ethylene glycol was used as a quencher, production of a +1 monomer product and a base-part deprotected product was confirmed to have been effectively suppressed.
(1) Synthesis of Dimer
Under an argon atmosphere, in a 10 mL Schlenk tube were placed HO-dT-SUC-TOB (80.4 mg, 64.9 mol) and Ac-TOB (99.6 mg, 104 μmol) and they were dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.4 mg, 195 μmol) and dT-CE phosphoramidite (145 mg, 195 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr was stirred. To the reaction solution was added methanol (39.5 μL, 975 μmol), a mixture of acetic acid (22.3 μL, 390 μmol) was added, and 2,4,6-trimethylpyridine (77.0 μL, 585 μmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (44.0 mg, 215 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (89.6 μL, 1.17 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (170 μL, 1.29 mmol) was added, acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (104 mg, yield 99%).
(2) Synthesis of Trimer
Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (104 mg, 64.2 μmol) obtained in the above-mentioned (1) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.5 mg, 195 μmol) and dA-CE phosphoramidite (165 mg, 195 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added methanol (39.5 μL, 975 μmol), a mixture of acetic acid (22.3 μL, 390 μmol) and 2,4,6-trimethylpyridine (77.0 μL, 585 μmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (44.0 mg, 214 μmol) was added and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (158 mg, 1.07 mmol) and trifluoroacetic acid (74.7 μL, 975 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.
Since Reference Example 2 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.
Example 3
(1) Synthesis of Phosphorothioate Dimer Wherein 3′-Hydroxy Group is Protected by Anchor
Under an argon atmosphere, in a 10 mL Schlenk tube were placed HO-dT-SUC-TOB (100 mg, 81 μmol) and MeOC(O)-TOB (100 mg, 106 μmol), and they were dissolved in dehydrated dichloromethane (4.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (46.6 mg, 242 μmol) and dT-CE phosphoramidite (181 mg, 242 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2,2,2-trifluoroethanol (86.6 μL, 1.21 mmol), and the mixture was stirred at room temperature for 15 min. Furthermore, a mixture of acetic acid (13.9 μL, 242 μmol) and 2,4,6-trimethylpyridine (31.9 μL, 242 μmol), and DDTT (54.7 mg, 267 μmol) were added, and the mixture was stirred at room temperature for 30 min. After stirring, 5-methoxyindole (238 mg, 1.62 mmol) and trifluoroacetic acid (55.7 μL, 727 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added acetonitrile (10 mL), and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO while washing with acetonitrile (20 mL) and dried under reduced pressure to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (222 mg, yield 96%).
(2) Synthesis of Phosphorothioate Trimer Wherein 3′-Hydroxy Group is Protected by Anchor
An operation similar to that in the above-mentioned (1) was further repeated once to give a trimer (N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl3,4,5-tris(octadecyloxy)benzyl succinate) (251 mg, yield 89%).
(1) Preparation of Reaction Solution
As shown in the below-mentioned Reference Examples 1 to 11, the reaction solution was prepared.
(2) Preparation and Analysis of Test Solution
In the same manner as in Experimental Example 2, the prepared test solution was measured by mass spectrometry, and the amount of the +1 monomer product and the amount of the base-part deprotected product were calculated. The results are shown in Table 3.
As shown in Table 3, when methanol, t-butanol, 2,2,2-trifluoroethanol or 2-propanol was used as a quencher, production of a +1 monomer product was confirmed to have been suppressed. Furthermore, when t-butanol, 2,2,2-trifluoroethanol or 2-propanol was used, production of a base-part deprotected product was also confirmed to have been suppressed. In addition, when a neutralized salt of acetic acid and 2,4,6-trimethylpyridine was copresent together with alcohol confirmed to have a production suppressive effect on a +1 monomer product and a base-part deprotected product, production of a byproduct was confirmed to have been suppressed.
(1) Synthesis of Dimer
Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (618 mg, 499 μmol) and Ac-TOB (618 mg, 646 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.11 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added a mixture of acetic acid (857 μL, 15.0 mmol) and pyridine (1.82 mL, 22.4 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (338 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (344 μL, 4.49 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (653 μL, 4.94 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (753 mg, yield 94%).
(2) Synthesis of Trimer
Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (753 mg, 468 μmol) obtained in the above-mentioned (1), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (270 mg, 1.40 mmol) and dA-CE phosphoramidite (1.20 g, 1.40 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added a mixture of acetic acid (402 μL, 7.01 mmol) and pyridine (567 μL, 7.01 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (317 mg, 1.54 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.38 g, 9.35 mmol) and trifluoroacetic acid (322 μL, 4.21 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.
Since Reference Example 3 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.
Example 4
Under an argon atmosphere, in a 10 mL Schlenk tube were placed HO-dT-SUC-TOB (100 mg, 81 μmol) and MeOC(O)-TOB (100 mg, 106 μmol), and they were dissolved in dehydrated dichloromethane (5.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (46.6 mg, 242 μmol) and dT-CE phosphoramidite (181 mg, 242 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2,2,2-trifluoroethanol (86.6 μL, 1.21 mmol), and the mixture was stirred at room temperature for 15 min. Furthermore, DPTT (28.0 mg, 73.0 μmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, 5-methoxyindole (234 mg, 1.62 mmol) and trifluoroacetic acid (55.7 μL, 727 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. The reaction solution was neutralized with 2,4,6-trimethylpyridine (105 μL, 800 μmol), triethyl phosphite (8.6 μL, 73.0 μmol) was added and the mixture was stirred at room temperature for 15 min. After stirring, acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (222 mg, yield 88%).
(1) Preparation of Reaction Solution
As shown in the below-mentioned Reference Examples 12 to 15, a reaction solution was prepared.
(2) Preparation of Test Solution
To the reaction solutions obtained in Reference Examples 12 to 15 were added a quencher and a neutralized salt in the kind and amount shown in Table 4. The reaction solution (50 μL) was dispensed to a 1.5 mL vial, DDTT (2.5 mg, 12 μmol) was added and the mixture was shaken for 30 sec. The mixture was diluted with tetrahydrofuran (450 μL), DBU (20 μL) was added and the mixture was stirred for 30 sec to give a test solution.
(3) Analysis
The obtained test solution was measured by mass spectrometry using LC-TOF MS (Agilent6230). The amount of the unreacted material was calculated by the following formula based on the abundance (m/z=2) of each compound observed (object compound and unreacted material).
amount(%) of unreacted material=(abundance of unreacted material/abundance of object compound)×100
As used herein, the unreacted material refers to a phosphoramidite monomer used for preparing the reaction solution.
As shown in Table 4, when t-butanol or 2,2,2-trifluoroethanol and a neutralized salt of acetic acid and 2,4,6-trimethylpyridine were copresent, condensation reaction was confirmed to have proceeded effectively without leaving an unreacted material during condensation reaction.
(1) Synthesis of Dimer
Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 500 μmol) and Ac-TOB (770 mg, 807 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added a mixture of acetic acid (172 μL, 3.00 mmol) and N-methylimidazole (178 μL, 2.25 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (339 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (574 μL, 7.50 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, N-methylimidazole (653 μL, 8.25 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (792 mg, 98%).
(2) Synthesis of Trimer
Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (792 mg, 492 μmol) obtained in the above-mentioned (1), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (284 mg, 1.48 mmol) and dA-CE phosphoramidite (1.27 g, 1.48 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added a mixture of acetic acid (169 μL, 2.95 mmol) and N-methylimidazole (175 μL, 2.21 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (333 mg, 1.62 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.45 g, 9.83 mmol) and trifluoroacetic acid (565 μL, 7.37 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.
Since Reference Example 4 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.
Example 5
Under an argon atmosphere, in a 10 mL Schlenk tube were placed HO-dT-SUC-TOB (80.3 mg, 65.0 μmol) and MeOC(O)-TOB (99.0 mg, 105 μmol) and they were dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.4 mg, 195 μmol) and dT-CE phosphoramidite (145 mg, 195 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2,2,2-trifluoroethanol (69.5 μmL, 973 μmol), and the mixture was stirred at room temperature for 15 min. Furthermore, PADS (177 mg, 584 μmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, 5-methoxyindole (191 mg, 1.30 mmol) and trifluoroacetic acid (44.7 μL, 584 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. The reaction solution was neutralized with 2,4,6-trimethylpyridine (84.6 μL, 642 μml). Acetonitrile (10 mL) was added, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (73.3 mg, 85%).
TOF/MS: 1557.0116
The phosphorothioate 10-mer obtained in the below-mentioned Reference Examples 16-20 were analyzed by HPLC and the purity of the obtained 10-mer (area %) was calculated. The results of the purity (area %) of quencher, neutralized salt and 10-mer used are shown in Table 5.
As shown in Table 5, when 2,2,2-trifluoroethanol or t-butanol, and a neutralized salt of acetic acid and 2,4,6-trimethylpyridine was used, the purity of 10-mer was confirmed to be high.
(1) Synthesis of Dimer
Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 500 μmol) and Ac-TOB (770 mg, 807 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added methanol (608 μL, 15.0 mmol), a mixture of acetic acid (172 μL, 3.00 mmol) and N-methylimidazole (356 μL, 4.50 mmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (339 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (689 μL, 9.00 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, N-methylimidazole (784 μL, 9.90 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (779 mg, yield 97%).
(2) Synthesis of Trimer
Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (779 mg, 483 μmol) obtained in the above-mentioned (1), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (279 mg, 1.45 mmol) and dA-CE phosphoramidite (1.24 g, 1.45 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added methanol (588 μL, 14.5 mmol), a mixture of acetic acid (166 μL, 2.90 mmol) and N-methylimidazole (344 μL, 4.35 mmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (328 mg, 1.60 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.42 g, 9.67 mmol) and trifluoroacetic acid (666 μL, 8.70 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.
Since Reference Example 5 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.
Example 6
Under an argon atmosphere, in a 10 mL Schlenk tube were placed deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)cyclohexyl-1-methyl]succinate (500 mg, 0.402 mmol) and methyl 3,4,5-tris(octadecyloxy)cyclohexyl-1-carboxylate (500 mg, 0.528 mmol), and they were dissolved in dehydrated dichloromethane (4.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (116 mg, 0.603 mmol) and dT-CE phosphoramidite (449 mg, 0.603 mmol) prepared by dissolving in dehydrated acetonitrile (0.4 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2,2,2-trifluoroethanol (129 μL, 1.81 mmol), and the mixture was stirred at room temperature for 15 min. Furthermore, DPTT (54.1 mg, 0.141 mmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, 5-methoxyindole (1.18 g, 8.04 mmol) and trifluoroacetic acid (115 μL, 1.51 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. The reaction solution was neutralized with 2,4,6-trimethylpyridine (218 μL, 1.66 mmol), acetonitrile (20 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)cyclohexyl-1-methyl]succinate) as a white solid (1.15 g, yield 100%).
(1) Synthesis of Dimer
Under an argon atmosphere, in a 10 mL Schlenk tube were placed HO-dT-SUC-TOB (80.3 mg, 65.0 μmol) and Ac-TOB (100 mg, 105 μmol) and they were dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.4 mg, 195 μmol) and dT-CE phosphoramidite (145 mg, 195 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added t-butanol (186 μL, 1.95 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (44.0 mg, 214 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (94.6 mg, 642 μmol) and trifluoroacetic acid (44.7 μL, 584 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (84.6 μL, 642 μmol) was added, acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (104 mg, yield 100%).
(2) Synthesis of Trimer
Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (104 mg, 65.0 μmol) obtained in the above-mentioned (1) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.3 mg, 194 μmol) and dA-CE phosphoramidite (167 mg, 194 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution. The reaction solution obtained at this time point was used as the reaction solution of Reference Example 13 in the above-mentioned Experimental Example 4.
To the reaction solution obtained as mentioned above was added t-butanol (186 μL, 1.94 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (43.9 mg, 214 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (94.3 mg, 641 μmol) and trifluoroacetic acid (44.6 μL, 583 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution. The reaction solution obtained at this time point was used as the reaction solution of Reference Example 6 in the above-mentioned Experimental Example 3.
Since Reference Example 6 and Reference Example 13 include steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, they are each one embodiment of the present invention.
Example 7
Under an argon atmosphere, in a 10 mL Schlenk tube were placed deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzoylpiperazine]succinate (100 mg, 76.0 μmmol) and methyl 3,4,5-tris(octadecyloxy)cyclohexyl-1-carboxylate (100 mg, 0.106 mmol) and they were dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (43.7 mg, 227 μmop and 2′-OMe-rA(Bz)-CE phosphoramidite (202 mg, 0.227 mmol) prepared by dissolving in dehydrated acetonitrile (0.3 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added morpholine (99.0 μL, 1.14 mmol), and the mixture was stirred at room temperature for 15 min. Furthermore, (2R,8aS)-(+)-(camphorylsulfonyl)oxaziridine (54.7 mg, 0.239 mmol) was added, and the mixture was stirred at room temperature for 1 hr. 5-Methoxyindole (223 mg, 1.52 mmol) and trifluoroacetic acid (34.8 μt, 0.455 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. The reaction solution was neutralized with 2,4,6-trimethylpyridine (65.9 μL, 500 μmol), acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (N6-benzoyl-2′-O-methyl-adenosine-3′-[O-(2-cyanoethyl)]phosphoryl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzoylpiperazine]succinate) as a white solid (214 mg, yield 89%).
(1) Synthesis of Dimer
Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 500 μmol) and Ac-TOB (772 mg, 808 mol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added t-butanol (1.43 mL, 15.0 mmol), a mixture of acetic acid (173 μL, 3.00 mmol) and 2,4,6-trimethylpyridine (594 μL, 4.50 mmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (339 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (689 μL, 8.99 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (1.31 mL, 9.89 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (798 mg, yield 99%).
(2) Synthesis of Trimer
Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (798 mg, 495 μmol) obtained in the above-mentioned (1), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (286 mg, 1.49 mmol) and dA-CE phosphoramidite, (1.27 g, 1.49 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution. The reaction solution obtained at this time point was used as the reaction solution of Reference Example 14 in the above-mentioned Experimental Example 4.
To the reaction solution obtained as mentioned above was added t-butanol (1.42 mL, 14.8 mmol), a mixture of acetic acid (171 μL, 2.97 mmol) and 2,4,6-trimethylpyridine (589 μL, 4.46 mmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (335 mg, 1.63 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.46 g, 9.90 mmol) and trifluoroacetic acid (569 μL, 7.43 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution. The reaction solution obtained at this time point was used as the reaction solution of Reference Example 7 in the above-mentioned Experimental Example 3.
Since Reference Example 7 and Reference Example 14 include steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, they are each one embodiment of the present invention.
Example 8
Under an argon atmosphere, in a 10 mL Schlenk tube were placed 3,4,5-tris(octadecyloxy)benzyl]succinate (100 mg, 81.0 μmmol) and methyl 3,4,5-tris(octadecyloxy)phenyl-1-carboxylate (100 mg, 0.106 mmol), and they were dissolved in dehydrated dichloromethane (5.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (46.6 mg, 242 μmol) and dG-CE phosphoramidite (204 mg, 0.242 mmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added morpholine (106 μL, 1.21 mmol), and the mixture was stirred at room temperature for 15 min. Furthermore, a mixed solution of iodine (64.6 mg, 0.254 mmol), 2,4,6-trimethylpyridine (83.8 μL, 0.636 mmol) and water (6.60 μL, 0.364 mmol) was added, and the mixture was stirred at room temperature for 1 hr. 5-Methoxyindole (238 mg, 1.62 mmol) and trifluoroacetic acid (55.7 μL, 0.727 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. The reaction solution was neutralized with 2,4,6-trimethylpyridine (105 μL, 800 μmol), acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give dinucleotide (N2-isobutyryl-deoxyadenosine-3′-[O-(2-cyanoethyl)]phosphoryl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (209 mg, yield 88%).
(1) Synthesis of Dimer
Under an argon atmosphere, in a 10 mL Schlenk tube was placed HO-dT-SUC-TOB (80.3 g, 65.0 μmol) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.4 mg, 195 μmol) and dT-CE phosphoramidite (145 mg, 195 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2-propanol (74.8 μL, 974 μmol), a mixture of acetic acid (22.2 μL, 390 μmol) and 2,4,6-trimethylpyridine (77.1 μL, 585 μmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (44.0 mg, 214 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (94.6 mg, 643 μmol) and trifluoroacetic acid (44.7 μL, 584 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (84.6 μL, 643 μmol) was added, acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (101 mg, yield 98%).
(2) Synthesis of Trimer
Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (101 mg, 63.0 μmol) obtained in the above-mentioned (1) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (36.3 mg, 189 μmol) and dA-CE phosphoramidite (162 mg, 189 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2-propanol (72.5 μL, 944 μmol), a mixture of acetic acid (10.8 μL, 189 μmol) and 2,4,6-trimethylpyridine (37.3 μL, 283 μmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (42.6 mg, 208 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (91.7 mg, 623 μmol) and trifluoroacetic acid (43.4 μL, 566 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.
Since Reference Example 8 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.
Example 9
(1) Synthesis of Dimer
Under an argon atmosphere, in a 300 mL four-necked flask was placed HO-dT-SUC-TOB (180 mg, 64.9 μmol) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.4 mg, 195 μmol) and dT-CE phosphoramidite (145 mg, 195 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2,2,2-trifluoroethanol (140 μL, 1.95 mmol), a mixture of acetic acid (22.3 μL, 390 μmol) and 2,4,6-trimethylpyridine (77.0 μL, 585 μmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (44.0 mg, 215 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (189 mg, 1.17 mmol) and trifluoroacetic acid (89.6 μL, 1.17 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (170 μL, 1.29 mmol) was added, acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (104 mg, yield 99%).
(2) Synthesis of Trimer
Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (101 mg, 62.5 μmol) obtained in the above-mentioned (1) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (36.1 mg, 188 μmol) and dA-CE phosphoramidite (161 mg, 188 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution. The reaction solution obtained at this time point was used as the reaction solution of Reference Example 15 in the above-mentioned Experimental Example 4.
To the reaction solution obtained as mentioned above was added 2,2,2-trifluoroethanol (134 μL, 1.88 mmol), a mixture of acetic acid (21.5 μL, 376 μmol) and 2,4,6-trimethylpyridine (74.3 μL, 564 μmol) was added, and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (42.5 mg, 207 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (147 mg, 1.00 mmol) and trifluoroacetic acid (72.0 μL, 910 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution. The reaction solution obtained at this time point was used as the reaction solution of Reference Example 9 in the above-mentioned Experimental Example 3.
Since Reference Example 9 and Reference Example 15 include steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, they are each one embodiment of the present invention.
Example 10
Under an argon atmosphere, in a 10 mL Schlenk tube was placed HO-dA-SUC-TOB (182 mg, 60.5 μmol) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (35.0 mg, 182 μmol) and dT-CE phosphoramidite (135 mg, 182 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2,2,2-trifluoroethanol (65.3 μL, 910 μmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (41.1 mg, 200 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (88.4 mg, 600 μmol) and trifluoroacetic acid (41.8 μL, 546 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.
Example 11
Under an argon atmosphere, in a 10 mL Schlenk tube was placed HO-dA-SUC-TOB (182 mg, 60.5 μmol) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (35.0 mg, 182 μmol) and dT-CE phosphoramidite (135 mg, 182 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added t-butanol (87.0 μL, 910 μmol), and the mixture was stirred at room temperature for min. After stirring, DDTT (41.1 mg, 200 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (88.4 mg, 600 μmol) and trifluoroacetic acid (41.8 μL, 546 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.
Example 12
(1) Synthesis of Dimer
Under an argon atmosphere, in a 10 mL Schlenk tube were placed HO-dT-SUC-TOB (80.3 mg, 65.0 μmol) and Ac-TOB (100 mg, 105 μmol) and they were dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (37.4 mg, 195 μmol) and dT-CE phosphoramidite (145 mg, 195 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added 2,2,2-trifluoroethanol (69.6 μL, 973 μmol), DDTT (44.0 mg, 214 μmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (94.6 mg, 642 μmol) and trifluoroacetic acid (44.7 μL, 584 μmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (84.6 μL, 642 μmol) was added, acetonitrile (10 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (98.3 mg, yield 94%).
(2) Synthesis of Trimer
Under an argon atmosphere, in a 300 mL four-necked flask was placed the dimer (98.3 mg, 61.0 μmol) obtained in the above-mentioned (1) and it was dissolved in dehydrated dichloromethane (3.0 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (35.2 mg, 183 μmol) and dA-CE phosphoramidite (157 mg, 183 μmol) prepared by dissolving in dehydrated acetonitrile (0.5 mL), and the mixture was stirred at room temperature for 1.5 hr to prepare a reaction solution.
Since Reference Example 12 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.
Example 16
(1) Synthesis of Phosphorothioate Dimer Wherein 3′-Hydroxy Group is Protected by Anchor
Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 500 mol) and Ac-TOB (619 mg, 648 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added methanol (608 μL, 15.0 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (340 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (345 μL, 4.50 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (654 μL, 4.95 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (762 mg, yield 95%).
(2) Synthesis of Phosphorothioate 9-Mer Wherein 3′-Hydroxy Group is Protected by Anchor
An operation similar to that in the above-mentioned (1) was further repeated 7 times to give a 9-mer (N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) (2.03 g).
(3) Synthesis of Phosphorothioate 10-Mer Wherein 3′-Hydroxy Group is Protected by Anchor and 5′-Hydroxy Group is Protected by DMTr Group
Under an argon atmosphere, in a 300 mL four-necked flask was placed the 9-mer (2.03 g) of the above-mentioned (2), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (228 mg, 1.19 mmol) and dG-CE phosphoramidite (1.00 g, 1.19 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. DDTT (338 mg, 1.64 mmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, acetonitrile (150 mL) was added to the reaction solution and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a 10-mer (5′-O-(4,4′-dimethoxytrityl)-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) as a white solid (2.28 g).
(4) Deprotection
A mixture of the 10-mer (20 mg) obtained in the above-mentioned (3) and 30 wt % aqueous ammonia (5.00 mL) was placed in an autoclave, heated at 55° C. for 16 hr and cooled to room temperature. Insoluble material in the reaction solution was removed by a syringe filter (Whatman 25 mm GD/X PVDF 0.45 μm), and the filtrate was freeze-dried to give the object deoxyguanidyl-[3′→5′]-deoxyadenylyl-[3′→5′]-deoxycytidinyl-[3′→5′]-deoxyadenylyl-[3′→5′ ]-deoxythymidinyl-[3′→5′]-deoxyguanidyl-[3′→5′ ]-deoxycytidinyl-[3′→5′ ]-deoxyadenylyl-[3′→5′]-deoxythymidinyl-[3′→5′ ]-deoxythymidine.
HPLC (WATERS XBridge™ C18 2.5 μm 4.6×75 mm column, flow rate 1.0 mL/min, 8 mM TEA+100 mM HFIP, MeOH, gradient: 0-10 min; 5 to 60%, λ=260 nm):Rt=6.61, 6.75 min (41.3+41.3%);
TOF/MS: 3471.489
Since Reference Example 16 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.
Example 17
(1) Synthesis of Phosphorothioate Dimer Wherein 3′-Hydroxy Group is Protected by Anchor
Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 500 μmol) and Ac-TOB (619 mg, 648 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added methanol (608 μL, 15.0 mmol), and the mixture was stirred at room temperature for 15 min. Thereafter, a separately prepared mixture of acetic acid (172 μL, 3.00 mmol) and 2,4,6-trimethylpyridine (595 μL, 4.50 mmol) was added, DDTT (339 mg, 1.65 mmol) was further added and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (689 μL, 9.00 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. The mixture was neutralized with 2,4,6-trimethylpyridine (654 μL, 4.95 mmol), acetonitrile (150 mL) was added, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (765 mg, yield 95%).
(2) Synthesis of Phosphorothioate 9-Mer Wherein 3′-Hydroxy Group is Protected by Anchor
An operation similar to that in the above-mentioned (1) was further repeated 7 times to give a 9-mer (N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[0-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) (2.18 g).
(3) Synthesis of Phosphorothioate 10-Mer Wherein 3′-Hydroxy Group is Protected by Anchor and 5′-Hydroxy Group is Protected by DMTr Group
Under an argon atmosphere, in a 300 mL four-necked flask was placed the 9-mer (2.18 g) obtained in the above-mentioned (2), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (272 mg, 1.42 mmol) and dG-CE phosphoramidite (1.19 g, 1.42 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. DDTT (320 mg, 1.56 mmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, acetonitrile (150 mL) was added to the reaction solution and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a 10-mer (5′-O-(4,4′-dimethoxytrityl)-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl3,4,5-tris(octadecyloxy)benzyl succinate) as a white solid (2.39 g).
(4) Deprotection
A mixture of 10-mer (20 mg) obtained in the above-mentioned (3) and 30 wt % aqueous ammonia (5.00 mL) was placed in an autoclave, heated at 55° C. for 16 hr and cooled to room temperature. Insoluble material in the reaction solution was removed by a syringe filter (Whatman 25 mm GD/X PVDF 0.45 μm), and the filtrate was freeze-dried to give the object deoxyguanidyl-[3′→5′]-deoxyadenylyl-[3′→5′]-deoxycytidinyl-[3′→5′ ]-deoxyadenylyl-[3′→5′ ]-deoxythymidinyl-[3′→5′ ]-deoxyguanidyl-[3′→5′]-deoxycytidinyl-[3′→5′]-deoxyadenylyl-[3′→5′]-deoxythymidinyl-[3′→5′ ]-deoxythymidine.
HPLC (WATERS XBridge™ C18 2.5 μm 4.6×75 mm column, flow rate 1.0 mL/min, 8 mM TEA+100 mM HFIP, MeOH, gradient: 0-10 min; 5 to 60%, λ=260 nm):Rt=7.06, 7.19 min (41.1+42.3%);
TOF/MS: 3471.49
Since Reference Example 17 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.
Example 18
(1) Synthesis of Phosphorothioate Dimer Wherein 3′-Hydroxy Group is Protected by Anchor
Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (617.5 mg, 499 μmol) and Ac-TOB (619 mg, 648 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (3.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added a separately prepared mixture of acetic acid (857 μL, 15.0 mmol) and dehydrated pyridine (1.82 mL, 22.5 mmol), and the mixture was stirred at room temperature for 15 min. After stirring, DDTT (338 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (345 μL, 4.50 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (653 μL, 4.94 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (753 mg, yield 94%).
(2) Synthesis of Phosphorothioate 9-Mer Wherein 3′-Hydroxy Group is Protected by Anchor
An operation similar to that in the above-mentioned (1) was further repeated 7 times to give a 9-mer (N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[0-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) (1.41 g).
(3) Synthesis of Phosphorothioate 10-Mer Wherein 3′-Hydroxy Group is Protected by Anchor and 5′-Hydroxy Group is Protected by DMTr Group
Under an argon atmosphere, in a 300 mL four-necked flask was placed the 9-mer (1.41 g) obtained in the above-mentioned (2), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (159 mg, 829 μmol) and dG-CE phosphoramidite (696 mg, 829 μmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. DDTT (187 mg, 912 μmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, acetonitrile (150 mL) was added to the reaction solution and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a 10-mer (5′-O-(4,4′-dimethoxytrityl)-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[0-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) as a white solid (1.51 g).
(4) Deprotection
A mixture of the 10-mer (20 mg) obtained in the above-mentioned (3) and 30 wt % aqueous ammonia (5.00 mL) was placed in an autoclave, heated at 55° C. for 16 hr and cooled to room temperature. Insoluble material in the reaction solution was removed by a syringe filter (Whatman 25 mm GD/X PVDF 0.45 μm), and the filtrate was freeze-dried to give the object deoxyguanidyl-[3′→5′]-deoxyadenylyl-[3′→5′]-deoxycytidinyl-[3′→5′]-deoxyadenylyl-[3′→5′]-deoxythymidinyl-[3′→5′]-deoxyguanidyl-[3′→5′]-deoxycytidinyl-[3′→5′]-deoxyadenylyl-[3′→5′ ]-deoxythymidinyl-[3′→5′ ]-deoxythymidine.
HPLC (WATERS XBridge™ C18 2.5 μm 4.6×75 mm column, flow rate 1.0 mL/min, 8 mM TEA+100 mM HFIP, MeOH, gradient: 0-10 min; 5 to 60%, λ=260 nm):Rt=7.32, 7.47 min (40.3 area %+39.7 area %); TOF/MS: 3471.493
Since Reference Example 18 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.
Example 19
(1) Synthesis of Phosphorothioate Dimer Wherein 3′-Hydroxy Group is Protected by Anchor
Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 500 μmol) and Ac-TOB (619 mg, 648 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added a mixture of 2,2,2-trifluoroethanol (1.09 mL, 15.0 mmol), and the mixture was stirred at room temperature for 15 min. Thereafter, a separately prepared mixture of acetic acid (172 μL, 3.00 mmol) and 2,4,6-trimethylpyridine (595 μL, 4.50 mmol) was added, DDTT (339 mg, 1.65 mmol) was further added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (345 μL, 4.50 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (653 μL, 4.94 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (788 mg, yield 98%).
(2) Synthesis of Phosphorothioate 9-Mer Wherein 3′-Hydroxy Group is Protected by Anchor
An operation similar to that in the above-mentioned (1) was further repeated 7 times to give a 9-mer (N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[0-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) (1.97 g).
(3) Synthesis of Phosphorothioate 10-Mer Wherein 3′-Hydroxy Group is Protected by Anchor and 5′-Hydroxy Group is Protected by DMTr Group
Under an argon atmosphere, in a 300 mL four-necked flask was placed the compound (1.97 g) of the above-mentioned (2), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (222 mg, 1.16 mmol) and dG-CE phosphoramidite (972 mg, 1.16 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. DDTT (261 mg, 1.27 mmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, acetonitrile (150 mL) was added to the reaction solution and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a 10-mer (5′-O-(4,4′-dimethoxytrityl)-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[0-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) as a white solid (2.21 g).
(4) Deprotection
A mixture of the 10-mer (20 mg) obtained in the above-mentioned (3) and 30 wt % aqueous ammonia (5.00 mL) was placed in an autoclave, heated at 55° C. for 16 hr and cooled to room temperature. Insoluble material in the reaction solution was removed by a syringe filter (Whatman 25 mm GD/X PVDF 0.45 μm), and the filtrate was freeze-dried to give the object deoxyguanidyl-[3′→5′]-deoxyadenylyl-[3′→5′]-deoxycytidinyl-[3′→5′ ]-deoxyadenylyl-[3′→5′ ]-deoxythymidinyl-[3′→5′ ]-deoxyguanidyl-[3′→5′ ]-deoxycytidinyl-[3′→5′ ]-deoxyadenylyl-[3′→5′ ]-deoxythymidinyl-[3′→5′]-deoxythymidine.
HPLC (WATERS XBridge™ C18 2.5 μm 4.6×75 mm column, flow rate 1.0 mL/min, 8 mM TEA+100 mM HFIP, MeOH, gradient: 0-10 min; 5 to 60%, λ=260 nm):Rt=7.36, 7.48 min (48.8 area %+44.8 area %); TOF/MS: 3471.495
Since Reference Example 19 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.
Example 20
(1) Synthesis of Phosphorothioate Dimer Wherein 3′-Hydroxy Group is Protected by Anchor
Under an argon atmosphere, in a 300 mL four-necked flask were placed HO-dT-SUC-TOB (619 mg, 500 μmol) and Ac-TOB (619 mg, 648 μmol), and they were dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (288 mg, 1.50 mmol) and dT-CE phosphoramidite (1.12 g, 1.50 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. To the reaction solution was added t-butanol (1.43 mL, 15.0 mmol), and the mixture was stirred at room temperature for 15 min. Thereafter, a separately prepared mixture of acetic acid (173 μL, 3.00 mmol) and 2,4,6-trimethylpyridine (594 μL, 4.50 mmol) was added, DDTT (339 mg, 1.65 mmol) was further added, and the mixture was stirred at room temperature for 1 hr. Thereafter, 5-methoxyindole (1.47 g, 10.0 mmol) and trifluoroacetic acid (689 L, 8.99 mmol) were successively added, and the mixture was stirred at room temperature for 1.5 hr. Furthermore, 2,4,6-trimethylpyridine (1.31 mL, 9.89 mmol) was added, acetonitrile (150 mL) was added to the reaction solution, and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give a dimer (deoxythymidine-3′-[O-(2-cyanoethyl)]phosphorothionyl deoxythymidin-3′-yl-[3,4,5-tris(octadecyloxy)benzyl]succinate) as a white solid (798 mg, yield 99%).
(2) Synthesis of Phosphorothioate 9-Mer Wherein 3′-Hydroxy Group is Protected by Anchor
An operation similar to that in the above-mentioned (1) was further repeated 7 times to give a 9-mer (N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[0-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl 3,4,5-tris(octadecyloxy)benzyl succinate) (1.93 g).
(3) Synthesis of Phosphorothioate 10-Mer Wherein 3′-Hydroxy Group is Protected by Anchor and 5′-Hydroxy Group is Protected by DMTr Group
Under an argon atmosphere, in a 300 mL four-necked flask was placed the 9-mer (1.93 g) obtained in the above-mentioned (2), and it was dissolved in dehydrated dichloromethane (25 mL). To the obtained solution was added a mixed solution of 5-benzylthio-1H-tetrazole (218 mg, 1.13 mmol) and dG-CE phosphoramidite (950 mg, 1.13 mmol) prepared by dissolving in dehydrated acetonitrile (2.0 mL), and the mixture was stirred at room temperature for 1.5 hr. DDTT (256 mg, 1.23 mmol) was added, and the mixture was stirred at room temperature for 30 min. After stirring, acetonitrile (150 mL) was added to the reaction solution and the precipitated solid was collected by suction filtration using a KIRIYAMA ROHTO and dried to give 10-mer (5′-O-(4,4′-dimethoxytrityl)-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N2-isobutyryl-deoxyguanosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-N4-(2-hexyl)decanoyl-deoxycytidine 3-[O-(2-cyanoethyl)]phosphorothionyl-N6-benzoyl-deoxyadenosine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidine 3′-[O-(2-cyanoethyl)]phosphorothionyl-deoxythymidin-3′-yl3,4,5-tris(octadecyloxy)benzyl succinate) as a white solid (2.14 g).
(4) Deprotection
A mixture of the 10-mer (20 mg) obtained in the above-mentioned (3) and 30 wt % aqueous ammonia (5.00 mL) was placed in an autoclave, heated at 55° C. for 16 hr and cooled to room temperature. Insoluble material in the reaction solution was removed by a syringe filter (Whatman 25 mm GD/X PVDF 0.45 μm), and the filtrate was freeze-dried to give the object deoxyguanidyl-[3′→5′]-deoxyadenylyl-[3′→5′]-deoxycytidinyl-[3′→5′′]-deoxyadenylyl-[3′→5′]-deoxythymidinyl-[3′→5′ ]-deoxyguanidyl-[3′→5′]-deoxycytidinyl-[3′→5′]-deoxyadenylyl-[3′→5′]-deoxythymidinyl-[3′→5′]-deoxythymidine.
HPLC (WATERS XBridge™ C18 2.5 μm 4.6×75 mm column, flow rate 1.0 mL/min, 8 mM TEA+100 mM HFIP, MeOH, gradient: 0-10 min; 5 to 60%, λ=260 nm):Rt=6.95, 7.08 min (44.3 area %+42.7 area %); TOF/MS: 3471.493
Since Reference Example 20 includes steps (1), (3), (4) and (6) in the synthesis of the above-mentioned dimer, it is one embodiment of the present invention.