The largest database of trusted experimental protocols

Macs anti biotin magnetic beads

Manufactured by Miltenyi Biotec

MACs anti-biotin magnetic beads are a laboratory product designed for cell separation and isolation applications. The beads are coated with anti-biotin antibodies, which allow for the specific binding and separation of biotin-labeled cells or molecules from a heterogeneous sample. This product can be used in a variety of experimental protocols that require the isolation or purification of target cell populations or molecules.

Automatically generated - may contain errors

3 protocols using macs anti biotin magnetic beads

1

Isolation and Enrichment of Diverse Cell Populations

Check if the same lab product or an alternative is used in the 5 most similar protocols
Mouse tissue‐derived cells were isolated from cell suspension after digestion of minced tissue with 1 mg/ml collagenase IV (GIBCO), 0.5 mg/ml Dispase (GIBCO), and 1 mg/ml DNase I (Applichem). Mouse blood cells were derived from peripheral blood after red blood cell lysis. Human immune cells were derived from density gradient separated blood polymorphonuclear cell and mononuclear cell fractions using Lympholyte‐poly solution (Cedarlane), and only autologous, sample‐matched cells were used for co‐culture. Specific cell populations were enriched by either magnetic or fluorescence‐based (FACS) sorting for cell type‐specific antibodies (see Appendix Tables S1 and S3 for detailed information). Biotinylated antibodies with MACS anti‐biotin magnetic beads and MACS columns (Miltenyi Biotec) were used for magnetic sorting. FACS sorting was done on FACS‐Aria II or FACS‐ARIA Fusion and FACS analysis on LSR Fortessa machines (all BD Biosciences).
+ Open protocol
+ Expand
2

Adoptive Transfer of OT2 T Cells and SWHELBcells

Check if the same lab product or an alternative is used in the 5 most similar protocols
OT2 T cells were enriched by negative depletion with biotinylated antibodies for anti-B220 clone RA3-6B2, anti-CD11b clone M1/70, anti-CD11c clone HL3, anti-CD8 clone 53-6.7, and SWHEL B cells were enriched by negative depletion with biotinylated antibodies for anti-CD11b, anti-CD11c, anti-CD4 clone GK1.5, anti-CD43 clone S7 (all from BD Bisociences) and MACs anti-biotin magnetic beads (Miltenyi). Purity of CD4+ Vα2+ OT2 T cells was typically 70–80% and B220+ HEL-binding SWHEL B cells >99% as determined by FACs analysis. 2.5 × 105 CD4+Vα2+ OT2 T cells and B220+ HEL-binding SWHEL B cells were adoptively transferred into age and sex matched 6–9-week-old C57BL/6 or SAP-deficient recipient mice. Recipient mice were immunised the next day by subcutaneous injection with 20 μg HEL-OVA in Sigma Adjuvant System (SAS, Sigma) in the lower flank and base of tail. For memory responses, mice that had been immunised were rested for at least 28 days and then re-challenged with 40 μg HEL-OVA in SAS injected subcutaneously in the lower flank and base of tail. HEL was conjugated to OVA323–339 peptide (CGGISQAVHAAHAEINEAGR) (Mimotopes/Genscript) using the SMPH cross-linking agent Succinimidyl-6-([ß-maleimidopropionamido] hexanoate) (Thermo Fisher Scientific) to generate HEL-OVA48 (link).
+ Open protocol
+ Expand
3

Tracking Antigen-Specific B and T Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
Kaede OT2 T cells were enriched by negative depletion with biotinylated antibodies for anti-B220 clone RA3-6B2, anti-CD11b clone M1/70, anti-CD11c clone HL3, anti-CD8 clone 53–6.7, and tdtomato SWHEL B cells (Phan et al., 2003 (link)) were enriched by negative depletion with biotinylated antibodies for anti-CD11b, anti-CD11c, anti-CD4 clone GK1.5, anti-CD43 clone S7 (all from BD Bisociences) and MACs anti-biotin magnetic beads (Miltenyi). 2.5 × 105 B220+ HEL+ SWHEL tdTomato B cells and Vα2+ CD4+ Kaede OT2 cells were adoptively transferred into C57BL/6 recipients and immunised the next day with 20 μg HEL-OVA in Sigma Adjuvant System (Sigma) injected subcutaneously in the lower flank and tail base. To label SCS macrophages, we injected CD169 clone Ser-4 (UCSF Hybridoma Core) conjugated to Alexa Fluor 680 (Invitrogen), 12 hr before imaging. Mice were imaged 7 days after immunisation.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!