Gene specific probes
Gene-specific probes are laboratory tools used to detect and analyze specific DNA or RNA sequences in biological samples. They are designed to hybridize with complementary target sequences, allowing for the identification and quantification of specific genes or gene expression.
Lab products found in correlation
13 protocols using gene specific probes
Quantitative Gene Expression Profiling
Nanostring Analysis of NTC Genes
MDM2-Targeting sd-rxRNAs: Dose-Response Study
Example 2
MDM2-targeting sd-rxRNAs were tested in an in vitro dose response study. The sd-rxRNAs were tested for activity in RB177 cells (human retinoblastoma cell line) cells (50,000 cells/well, 96 well plate). RB177 cells were treated with varying concentrations of MDM2-targeting sd-rxRNAs or non-targeting control (#21803) in serum-free media. Concentrations tested were 1, 0.5, 0.1, 0.05, 0.025 and 0.01 μM. The non-targeting control sd-rxRNA (#21803) is of similar structure to the MDM2-targeting sd-rxRNA and contains similar stabilizing modifications throughout both strands. Forty eight hours post administration, cells were lysed and mRNA levels determined by the Quantigene branched DNA assay according to manufacturer's protocol using gene-specific probes (Affymetrix).
MDM2-targeting sd-rxRNA Silencing Kinetics
Example 3
The duration of action of MDM2-targeting sd-rxRNAs was tested in vitro in RB177 cells following a single administration of the sd-rxRNA. The sd-rxRNAs were tested for activity in RB177 cells (human retinoblastoma cell line—50,000 cells/well, 96 well plate) over a period of 6 days. RB177 cells were treated with varying concentrations of a panel of MDM2-targeting sd-rxRNAs or non-targeting control (#21803) in serum-free media. Concentrations tested were 1 and 0.2 μM. The non-targeting control sd-rxRNA (#21803) is of similar structure to the MDM2-targeting sd-rxRNA and contains similar stabilizing modifications throughout both strands. Media was changed every forty-eight hours. Cells were lysed on day 2, 4 or 6 post administration and mRNA levels determined by the Quantigene branched DNA assay according to manufacturer's protocol using gene-specific probes (Affymetrix).
Quantitative Gene and miRNA Expression
To quantify miRNA expression, the total RNA was reverse transcribed with a miRNA-specific looped RT primer (Applied Biosystems). MiR-4728 was tested with miRNA-specific Taqman minor groove binder probes (Applied Biosystems). U6 was used as an internal control. All Taqman qRT- PCR studies were performed in triplicate on an ABI 7500 system (Applied Biosystems) and the data were presented as mean ± SE.
Quantifying GC-C and Uroguanylin Expression
Quantification of Gene Expression Profiles
Quantitative Analysis of Cell Cycle Genes
Quantitative gene expression analysis
The reverse transcription of RNA to cDNA was conducted using a High Capacity cDNA Archive Kit (Applied Biosystems, Foster City, CA). One hundred nanograms of total cDNA were added per 20 μl reaction with sequence-specific primers and Taqman probes. Quantitative gene expression was analyzed for PLA2G16 (Hs00912734_m1) and GAPDH (Hs02758991_g1) with gene-specific probes (Applied Biosystems) using Taqman Universal PCR Master Mix and was carried out in triplicate on an ABI Prism 7900 system according to the manufacturer’s instructions. The data were then quantified using the comparative Ct method for relative gene expression compared with GAPDH as endogenous control.
Quantification of DYRK2 Gene Expression
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!