The largest database of trusted experimental protocols

Pan cytokeratin antibody

Manufactured by Santa Cruz Biotechnology
Sourced in United States

Pan cytokeratin antibodies are a class of antibodies that recognize a broad spectrum of cytokeratin proteins, which are intermediate filament proteins found in the cytoplasm of epithelial cells. These antibodies are commonly used in immunohistochemistry and other applications to identify and characterize epithelial cells and their derivatives.

Automatically generated - may contain errors

4 protocols using pan cytokeratin antibody

1

Pterygium Cell Lines Characterization

Check if the same lab product or an alternative is used in the 5 most similar protocols
The pterygium cell lines (PECs) used in this study were established previously [16 (link)]. To confirm whether the established PECs were epithelial cells, the cell type was further confirmed via staining with p63 and pan cytokeratin antibodies (Santa Cruz Biotechnology, Santa Cruz, CA).
+ Open protocol
+ Expand
2

Gingival Immune Markers in Periodontitis

Check if the same lab product or an alternative is used in the 5 most similar protocols
The protocol was approved by the Institutional Ethics Committee of West China Hospital of Stomatology (Chengdu, Sichuan, China, WCHSIRB-ST-2014-091). Human gingival specimens were collected from crown lengthening surgery (normal gingival tissues) and gingivectomy (periodontitis tissues) by informed consent.
Immunohistochemical localization of select proteins were performed on standard protocol on 4% paraformaldehyde fixed, paraffin embedded tissues using anti Luciferase (Novus Biologicals, Littleton, CO), NLRP3 (LifeSpan Biosciences), 8-OHdG (Abcam), TUNEL (Thermo Fisher Scientific Inc., Waltham, MA, USA), IL-1β (R&D Systems), Gr1.1 (Novus Biologicals), CD33 (Abcam), CD11b (Abcam), and Pan cytokeratin antibodies (Santa Cruz Biotechnology). Quantitation of positive staining was normalized to total number of cells per field by NIH Image software.
+ Open protocol
+ Expand
3

Immunohistochemical Analysis of Bladder Tissue

Check if the same lab product or an alternative is used in the 5 most similar protocols
Scaffolds were fixed in 4% formaldehyde and embedded in paraffin at each point of analysis. Five µm sections were either stained with hematoxylin and eosin (H + E) or immunolabeled against expression of pan-cytokeratin and uroplakin III. In brief, section were dewaxed with xylene (Merck, Darmstadt, Germany) and rehydrated through descending concentrations of ethanol. Following permeabilization with 0.2% Triton X-100 (Sigma-Aldrich; St. Louis, MO, USA) and citrate-based antigen retrieval, nonspecific binding sites were blocked with 1% normal horse serum in PBS for 30 min. Sections were incubated with rabbit polyclonal uroplakin III or pan-cytokeratin antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) overnight at 4°C. Primary antibody binding sites were probed using biotinylated universal secondary antibody included in Vectastain Universal Elite ABC Kit (Vector Laboratories, Inc., Burlingame, CA). Biotinylated horseradish peroxidase was added; then, the reaction was revealed by brown color after 3,3’-diaminobenzidine substrate (Vector Laboratories, Inc., Burlingame, CA). Slides were counterstained with hematoxylin and examined under a microscope (Olympus BX41, Japan).
+ Open protocol
+ Expand
4

Isolation and Characterization of Nasal Polyp-Derived Fibroblasts

Check if the same lab product or an alternative is used in the 5 most similar protocols
Briefly, we collected the NPs from two patients with clinically significant responses to LNI (the cross-sectional area of the polyps in endoscopic images was reduced by 60–100% after treatment) (Fig. 2). After their NPs were separated, the fibroblasts were isolated and cultured to enable subsequent cell experiments. The NPs were obtained during sinonasal surgery and were subsequently processed into single-cell suspensions using a gentle MACS dissociator (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany), which is a specialized machine for processing human nasal mucosa into single-cell suspensions. Furthermore, we sorted the nasal polyp-derived fibroblasts (NPDFs) from the single-cell suspensions. On the basis of the protocol of the EasySep Human-Positive Selection Kit II (STEMCELL Technologies Inc., Vancouver, Canada), the samples were placed into a magnet and then incubated for the sorting process. Next, we sorted and purified the NPDFs using flow cytometry (BD FACS Canto II, BD Biosciences, San Jose, CA, USA) with fluorochrome-conjugated antibody clones, including the anti-human fibroblast antibody (anti-vimentin antibody for human, Abcam, Cambridge, MA, USA) and pan-cytokeratin antibody (Santa Cruz Biotechnology), which was considered the control. After sorting, we further employed flow cytometry to confirm the isolated cells with anti-vimentin antibodies.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!