The largest database of trusted experimental protocols

3 protocols using staurosporine

1

Apoptosis analysis in astrocytes

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cell death was analyzed in astrocytes at 3 days post plating after O/N incubation with DMSO (solvent control) or 0.5 μM Staurosporine (Euromedex; LS9300-A). Cells were trypsinized, counted and 106 cells were stained with a mix of 5% Annexin V-FITC (BD Horizon; 556547) to detect apoptotic cells, PI to detect necrotic cells and 2.5% Cd11b-V450 (BD Horizon; 560456) to exclude possible microglia contamination. Staining was performed for 15 min, prior to FACS analysis of 10,000 cells per embryo. Six different biological replicates were analyzed per genotype. The percentage of AnnexinV-positive, PI-positive WT and DMSXL astrocytes (negative for Cd11b staining) was analyzed in DMSO and Staurosporine conditions, using FlowJo software (BD Biosciences).
+ Open protocol
+ Expand
2

Immunofluorescence and Protein Analysis Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
The following primary antibodies were used: anti-MHC (MF20, Developmental Studies Hybridoma Bank, 1:1,000), anti-active-caspase 3 (ab13847, Abcam, 1:500), anti-cleaved caspase 3 (9661, Cell Signaling, 1:500), anti-YFP (ab6673; Abcam, 1:1,000), anti-RFP (600-401-379, Rockland, 1:500), anti-myc (05-724; Millipore, 1:100), anti-P53 (sc-99, sc-6243, Santa Cruz, 1:200), anti-MDM2 (sc-965, Santa Cruz, 1:200), anti-P19 (ab80, abcam, 1:500) and anti-GAPDH (AM4300, Invitrogen, 1:1,000). Appropriate horseradish peroxidase-conjugated and Alexa Fluor-conjugated secondary antibodies were used for western blot and immunofluorescence studies. The following reagents were used: Staurosporine (BD Biosciences) was used in concentrations ranging between 0.005 and 1 μM. Myoseverin (Sigma) was used at 25 μM. 4,4′ diisothiocyanatostilbene-2,2′-disulphonic acid (Molecular Probes) was used at 100 μM. TMRE (Invitrogen) was used at 10 nM. Z-VAD (Santa Cruz) or Q-VD-OPH (Santa Cruz) was used at 10 μM. YO-PRO-1 (Molecular Probes) was used at 1 mM. FLIVO tracer was from ImmunoChemistry Technologies. TUNEL assay was performed with In Situ Cell Death Detection Kit (Roche). EdU staining was performed by incubating 30 min with 100 mM Tris, 1 mM CuSO4, 10 μM fluorescent azide and 100 mM ascorbic acid43 (link).
+ Open protocol
+ Expand
3

Antibody Validation and Reagent Use

Check if the same lab product or an alternative is used in the 5 most similar protocols
The following primary antibodies were used: anti-MHC (MF20, Developmental Studies Hybridoma Bank, 1:1,000), anti-active-caspase 3 (ab13847, Abcam, 1:500), anti-cleaved caspase 3 (9661, Cell Signaling, 1:500), anti-YFP (ab6673; Abcam, 1:1,000), anti-RFP (600-401-379, Rockland, 1:500), anti-myc (05-724; Millipore, 1:100), anti-P53 (sc-99, sc-6243, Santa Cruz, 1:200), anti-MDM2 (sc-965, Santa Cruz, 1:200), anti-P19 (ab80, abcam, 1:500) and anti-GAPDH (AM4300, Invitrogen, 1:1,000). Appropriate horseradish peroxidase-conjugated and Alexa Fluor-conjugated secondary antibodies were used for western blot and immunofluorescence studies. The following reagents were used: Staurosporine (BD Biosciences) was used in concentrations ranging between 0.005 and 1 μM. Myoseverin (Sigma) was used at 25 μM. 4,4′ diisothiocyanatos-tilbene-2,2′-disulphonic acid (Molecular Probes) was used at 100 μM. TMRE (Invitrogen) was used at 10 nM. Z-VAD (Santa Cruz) or Q-VD-OPH (Santa Cruz) was used at 10 μM. YO-PRO-1 (Molecular Probes) was used at 1 mM. FLIVO tracer was from ImmunoChemistry Technologies. TUNEL assay was performed with In Situ Cell Death Detection Kit (Roche). EdU staining was performed by incubating 30 min with 100 mM Tris, 1 mM CuSO4, 10 μM fluorescent azide and 100 mM ascorbic acid43 (link).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!