For the Raman imaging analyses, the same Renishaw InVia spectrometer was used, employing its streamline (linefocus) mode. A flattened transect of the ignimbrite specimen, with visually evident green colonization about 1 mm below the surface, was adjusted under the microscope to obtain a consistent focal plane. Then, the selected area was subjected to mapping. For imaging of the carotenoids, a 5x magnification objective (NA/0.12) and Ar laser line at 514.5 nm was employed with 12 mW source power, 3 s exposure time, and a spectral range of 250–2100 cm−1. For detailed mapping of the carotenoids, the same laser line was employed with a 20x magnification objective (NA/0.40), 2.5 mW laser power, and 4 s exposure time. A 785 nm laser line and 20x magnification objective was used for imaging of phycobiliproteins, using 150 mW laser power, and 5 s exposure time.
Invia spectrometer
The InVia spectrometer is a versatile laboratory instrument designed for Raman spectroscopy analysis. It provides high-resolution measurement capabilities to researchers and scientists. The core function of the InVia spectrometer is to capture and analyze the Raman scattering of light interacting with a sample, enabling detailed characterization of its molecular structure and composition.
Lab products found in correlation
67 protocols using invia spectrometer
Raman Spectroscopy of Ignimbrite Colonization
For the Raman imaging analyses, the same Renishaw InVia spectrometer was used, employing its streamline (linefocus) mode. A flattened transect of the ignimbrite specimen, with visually evident green colonization about 1 mm below the surface, was adjusted under the microscope to obtain a consistent focal plane. Then, the selected area was subjected to mapping. For imaging of the carotenoids, a 5x magnification objective (NA/0.12) and Ar laser line at 514.5 nm was employed with 12 mW source power, 3 s exposure time, and a spectral range of 250–2100 cm−1. For detailed mapping of the carotenoids, the same laser line was employed with a 20x magnification objective (NA/0.40), 2.5 mW laser power, and 4 s exposure time. A 785 nm laser line and 20x magnification objective was used for imaging of phycobiliproteins, using 150 mW laser power, and 5 s exposure time.
Optical Characterization of 2D Materials
Comprehensive Materials Characterization Protocols
Raman Spectroscopy of Material Samples
Characterization of HfS2-rGO and HfP-rGO Catalysts
Raman Spectroscopy for Material Analysis
Raman Spectra Acquisition Protocol
Raman Spectroscopy Analysis of Samples
Raman Spectroscopy of Samples
Raman Spectroscopic Analysis of Dried Samples
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!