The largest database of trusted experimental protocols

Equinox 55 infrared microscope

Manufactured by Bruker
Sourced in Switzerland

The EQUINOX 55 is an infrared microscope designed for analytical applications. It provides high-resolution imaging and spectroscopic analysis of small samples. The core function of the EQUINOX 55 is to perform infrared spectroscopy and imaging on microscopic specimens.

Automatically generated - may contain errors

3 protocols using equinox 55 infrared microscope

1

Comprehensive Spectroscopic Characterization

Check if the same lab product or an alternative is used in the 5 most similar protocols
Optical rotations were carried out on an MCP-200 polarimeter (Anton Paar, Graz, Austria) with MeOH as solvent at 25 °C. UV spectra were acquired on a Blue Star A spectrophotometer. IR data were performed on a Fourier transformation infrared spectrometer coupled with an EQUINOX 55 infrared microscope (Bruker, Fällanden, Switzerland). Here, 1D and 2D NMR spectra were tested on a Bruker Avance 400 MHz spectrometer (Bruker, Fällanden, Switzerland) using TMS as an internal standard. HRESIMS and ESIMS data were recorded on an LTQ-Orbitrap LC-MS spectrometer (Thermo Corporation, MA, USA) and an ACQUITY QDA (Waters Corporation, MA, USA), respectively. HPLC preparative separations were performed on a Shimadzu Essentia LC-16. The Welch-Ultimate XB-C18 column (250 × 21.2 mm, 5 μm, 12 nm, Welch Materials, Inc., Shanghai, China) was used for preparative HPLC. Semi-preparative HPLC separations were performed on ACE-5-C18-AR and ACE-5-CN-ES columns (250 × 10 mm, 5 μm, 12 nm, Advanced Chromatography Technologies Ltd., Guangzhou, China). The silica gel (200−300 mesh, Qingdao Marine Chemical Inc., Qingdao, China) and Sephadex LH-20 (Amersham Biosciences, Uppsala, Sweden) were subjected to column chromatography (CC).
+ Open protocol
+ Expand
2

Analytical Characterization of Compounds

Check if the same lab product or an alternative is used in the 5 most similar protocols
Optical rotations were carried out on an MCP-200 polarimeter (Anton Paar, Graz, Austria) with MeOH as solvent at 25 °C. UV spectra were acquired on a Blue Star A spectrophotometer. IR data were performed on a Fourier transformation infrared spectrometer coupled with an EQUINOX 55 infrared microscope (Bruker, Fällanden, Switzerland). Here, 1D and 2D NMR spectra were tested on a Bruker Avance 400 MHz spectrometer (Bruker, Fällanden, Switzerland) using TMS as an internal standard. HR-ESIMS and ESIMS data were recorded on an LTQ-Orbitrap LC-MS spectrometer (Thermo Corporation, Waltham, MA, USA) and an ACQUITY QDA (Waters Corporation, Milford, MA, USA), respectively. HPLC preparative separations were performed on a Shimadzu Essentia LC-16. The Welch-Ultimate XB-C18 column (250 × 21.2 mm, 5 μm, 12 nm, Welch Materials, Inc., Shanghai, China) was used for preparative HPLC. Semi-preparative HPLC separations were performed on ACE-5-C18-AR and ACE-5-CN-ES columns (250 × 10 mm, 5 μm, 12 nm, Advanced Chromatography Technologies Ltd., Guangzhou, China). The silica gel (200–300 mesh, Qingdao Marine Chemical Inc., Qingdao, China) and Sephadex LH-20 (Amersham Biosciences, Uppsala, Sweden) were subjected to column chromatography (CC).
+ Open protocol
+ Expand
3

Spectroscopic Characterization of Compounds

Check if the same lab product or an alternative is used in the 5 most similar protocols
Optical rotations were recorded on an MCP-200 polarimeter (Anton Paar, Graz, Austria) with MeOH as solvent at 25 °C. UV spectra were measured on a Blue Star A spectrophotometer. IR data were carried out on a Fourier transformation infrared spectrometer coupled with an EQUINOX 55 infrared microscope (Bruker, Rheinstetten, Germany). A Bruker Avance 400 MHz spectrometer (Bruker, Karlsruhe, Germany) was used for 1D and 2D NMR spectra test with TMS as an internal standard. ESIMS and HRESIMS data were measured on an ACQUITY QDA (Waters Corporation, Milford, MA, USA) and an LTQ-Orbitrap LC-MS spectrometer (Thermo Corporation, Waltham, MA, USA), respectively. A Shimadzu Essentia LC-16 was used for HPLC preparative separations by a Welch-Ultimate XB-C18 column (250 × 21.2 mm, 5 μM, 12 nm, Welch Materials, Inc., Shanghai, China) an ACE-5-C18-AR, ACE-5-CN-ES and ACE-C18-PFP column (250 × 10 mm, 5 μM, 12 nm, FLM Advanced Chromatography Technologies Ltd., Guangzhou, China). Column chromatography (CC) was performed on silica gel (200−300 mesh, Qingdao Marine Chemical Inc., Qingdao, China) and Sephadex LH-20 (Amersham Biosciences, Uppsala, Sweden).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!