The largest database of trusted experimental protocols

Rhodamine dextran solution

Manufactured by Merck Group

Rhodamine-dextran solution is a fluorescent dye that can be used as a tracer in various research and laboratory applications. It consists of the rhodamine dye molecule conjugated to dextran, a polysaccharide polymer. This solution is designed to provide a stable and consistent fluorescent signal for tracking and visualization purposes.

Automatically generated - may contain errors

2 protocols using rhodamine dextran solution

1

Measuring Kartagener's Viscosity Modulation

Check if the same lab product or an alternative is used in the 5 most similar protocols
The KV fluid dilution assay was performed by aspirating the vesicular fluid into a micropipette previously filled with Danieau’s solution 1 x (58 mM NaCl, 0.7 mM KCl, 0.4 mM MgSO4, 0.6 mM Ca(NO3)2, 5.0 mM HEPES pH 7.6) diluted in 10,000 MW rhodamine-dextran solution (1:4; Sigma-Aldrich). The mixed solution was injected again into the KV and only embryos with rhodamine-positive KV’s were selected for the experiment. For viscosity manipulation, the micropipette was filled with Danieau’s solution 1 x containing 1.5% (w/v) of methylcellulose (M0555, Sigma). Aspirated KV fluid and methylcellulose were then injected again into the KV lumen until reaching the KV volume observed before the manipulation.
+ Open protocol
+ Expand
2

Two-Photon Microscopy of T Cell Trafficking

Check if the same lab product or an alternative is used in the 5 most similar protocols
Before two-photon microscopy, 1 × 106 CD8+ T cells from dCLNs of mice injected with parental or LM cells were isolated, labeled by 0.5 μM CFSE (Thermo Fisher, Cat# C34554) for 15 min at 37℃, and transferred to recipient mice via caudal veins. 24 hr after T cell transfusion, mice were anesthetized, and thinned skull windows were prepared. Mice were injected with 100 μL rhodamine dextran solution (100 mg/mL, Sigma, R9379) where indicated to visualize blood vessels. Images were captured in z-stacks of 10–30 planes (1 μm step size) using an Olympus FVMPE-RS two-photon microscope.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!