The largest database of trusted experimental protocols

3.0 t clinical mri scanner system

Manufactured by Siemens
Sourced in Germany

The 3.0-T clinical MRI scanner system is a medical imaging device that uses a powerful magnetic field and radio waves to generate detailed images of the body's internal structures. The system operates at a magnetic field strength of 3.0 Tesla, which provides high-resolution images for diagnostic purposes.

Automatically generated - may contain errors

2 protocols using 3.0 t clinical mri scanner system

1

Light-Triggered Contrast Agent Imaging

Check if the same lab product or an alternative is used in the 5 most similar protocols
Firstly, the LTCA solution was placed in a quartz cuvette and irradiated by NIR laser for 10 min at 1 W/cm2. C6 cells were seeded in 25 cm2 flask and allowed to grow to ~80% density. Then, the medium was replaced by 2 mL of fresh medium containing various concentrations of LTCAs (I-: 2, 4, 6, 8, and 10 μM). After incubation with LTCAs for 4 h, the medium was replaced by 1.5 mL of cell lysis reagent. The cell lysis solution was then collected for CT imaging. CT scans were performed using a GE Light Speed VCT imaging system at 80 kV and 100 mA, with a slice thickness of 0.625 mm. As a control group, the LTCA solution without irradiation was also evaluated as in the aforementioned procedure. In vitro light-triggered MRI imaging was determined by 3.0-T clinical MRI scanner system (Siemens, Berlin, Germany) at T1WI and T1 map sequences with TR 15 ms and TE 2.1 ms. The cell sample was prepared as in the aforementioned CT procedure; the incubated concentrations of Gd(III) were 0.06, 0.12, 0.18, 0.24, and 0.3 mM.
+ Open protocol
+ Expand
2

Multimodal Imaging of C6 Tumor-Bearing Mice

Check if the same lab product or an alternative is used in the 5 most similar protocols
C6 tumor-bearing BALB/c nude mice were injected with the LTCA solution (200 μL) through the tail vein. After the injection, the tumor CT images of mice with or without laser irradiation were obtained with GE Light Speed VCT imaging system (80 KV, 100 mA, slice thickness 0.625 mm). The in vivo MRI imaging was also evaluated as in the aforementioned procedure and performed on a 3.0 T clinical MRI scanner system (Siemens) at T1WI, T1 map sequences with TR 15 ms and TE 2.1 ms. FI imaging was conducted with a PerkinElmer IVIS system (PerkinElmer, Inc., Santa Clara, USA). Tumor imaging before irradiation was used as control.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!