Foxp3 clone pch101
Foxp3 (clone PCH101) is a laboratory reagent used for the detection and analysis of the Foxp3 protein, a transcription factor expressed in regulatory T cells. It is a tool for research purposes, and its core function is to provide a means to identify and study Foxp3-expressing cells.
Lab products found in correlation
16 protocols using foxp3 clone pch101
Expansion and Characterization of Human Tregs
Tregitope Activation of Regulatory T Cells
Example 3
Human PBMCS were stimulated directly ex vivo for 4 days in the presence of tetanus toxin peptide TT830-844 alone, Tregitope-289 alone, phytohemagglutinin (a mitogenic positive control) alone, or no stimulus. 1×106 cells were stained with anti-CD4-FITC (clone RPA-T4; eBioscience) and anti-CD25-APC (clone BC96; eBioscience) antibodies for 30 minutes on ice in Flow Staining Buffer (eBioscience) and washed twice with buffer. Following cell-surface staining, cells were fixed and permeabilized (eBioscience) and stained intracellulary for Foxp3 (clone PCH101; eBioscience) following manufacturer's protocol. The frequency of FoxP3 positive CD4+/CD25+ T cells under various culture conditions was enumerated by Flowjo analysis software. There were similar increases in CD25 expression in both the Tetanus- and Tregitope-stimulated samples indicating T cell activation by both peptides (
Tregitope Induces FoxP3 Expression
Example 3
Human PBMCS were stimulated directly ex vivo for 4 days in the presence of tetanus toxin peptide TT830-844 alone, Tregitope-289 alone, phytohemagglutinin (a mitogenic positive control) alone, or no stimulus. 1×106 cells were stained with anti-CD4-FITC (clone RPA-T4; eBioscience) and anti-CD25-APC (clone BC96; eBioscience) antibodies for 30 minutes on ice in Flow Staining Buffer (eBioscience) and washed twice with buffer. Following cell-surface staining, cells were fixed and permeabilized (eBioscience) and stained intracellularly for Foxp3 (clone PCH101; eBioscience) following manufacturer's protocol. The frequency of FoxP3 positive CD4+/CD25+ T cells under various culture conditions was enumerated by Flowjo analysis software. There were similar increases in CD25 expression in both the Tetanus- and Tregitope-stimulated samples indicating T cell activation by both peptides (
Tregitope Induction of Regulatory T Cells
Example 3
Human PBMCS were stimulated directly ex vivo for 4 days in the presence of tetanus toxin peptide TT830-844 alone, Tregitope-289 alone, phytohemagglutinin (a mitogenic positive control) alone, or no stimulus. 1×106 cells were stained with anti-CD4-FITC (clone RPA-T4; eBioscience) and anti-CD25-APC (clone BC96; eBioscience) antibodies for 30 minutes on ice in Flow Staining Buffer (eBioscience) and washed twice with buffer. Following cell-surface staining, cells were fixed and permeabilized (eBioscience) and stained intracellulary for Foxp3 (clone PCH101; eBioscience) following manufacturer's protocol. The frequency of FoxP3 positive CD4+/CD25+ T cells under various culture conditions was enumerated by Flowjo analysis software. There were similar increases in CD25 expression in both the Tetanus- and Tregitope-stimulated samples indicating T cell activation by both peptides (
Multiparameter Immune Cell Profiling
Tregitope Induction of Regulatory T Cells
Example 3
Human PBMCS were stimulated directly ex vivo for 4 days in the presence of tetanus toxin peptide TT830-844 alone, Tregitope-289 alone, phytohemagglutinin (a mitogenic positive control) alone, or no stimulus. 1×106 cells were stained with anti-CD4-FITC (clone RPA-T4; eBioscience) and anti-CD25-APC (clone BC96; eBioscience) antibodies for 30 minutes on ice in Flow Staining Buffer (eBioscience) and washed twice with buffer. Following cell-surface staining, cells were fixed and permeabilized (eBioscience) and stained intracellulary for Foxp3 (clone PCH101; eBioscience) following manufacturer's protocol. The frequency of FoxP3 positive CD4+/CD25+ T cells under various culture conditions was enumerated by Flowjo analysis software. There were similar increases in CD25 expression in both the Tetanus- and Tregitope-stimulated samples indicating T cell activation by both peptides (
Tregitope Induction of Regulatory T Cells
Example 3
Human PBMCS were stimulated directly ex vivo for 4 days in the presence of tetanus toxin peptide TT830-844 alone, Tregitope-289 alone, phytohemagglutinin (a mitogenic positive control) alone, or no stimulus. 1×106 cells were stained with anti-CD4-FITC (clone RPA-T4; eBioscience) and anti-CD25-APC (clone BC96; eBioscience) antibodies for 30 minutes on ice in Flow Staining Buffer (eBioscience) and washed twice with buffer. Following cell-surface staining, cells were fixed and permeabilized (eBioscience) and stained intracellulary for Foxp3 (clone PCH101; eBioscience) following manufacturer's protocol. The frequency of FoxP3 positive CD4+/CD25+ T cells under various culture conditions was enumerated by Flowjo analysis software. There were similar increases in CD25 expression in both the Tetanus- and Tregitope-stimulated samples indicating T cell activation by both peptides (
Multiparametric Flow Cytometry Analysis of Treg and Th17 Cells
IL-17 production was assessed after 3-hour stimulation of cells at 37°C in the presence of phorbol 12-myristate 13-acetate (PMA) (0.05 µg/mL), ionomycin (0.5 µg/mL), and brefeldin A (5 µg/mL) (Sigma-Aldrich, USA).
Multiparameter Flow Cytometry of PBMCs
Multicolor Flow Cytometry of Immune Cells
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!