The largest database of trusted experimental protocols

Rabbit anti cd45 antibody

Manufactured by Abcam
Sourced in United States

Rabbit anti-CD45 antibody is a primary antibody that specifically binds to the CD45 protein, which is a receptor-linked protein tyrosine phosphatase expressed on the surface of most hematopoietic cells. This antibody can be used in various immunological applications to identify and study CD45-expressing cells.

Automatically generated - may contain errors

3 protocols using rabbit anti cd45 antibody

1

Quantifying Leukocyte Populations via Flow Cytometry

Check if the same lab product or an alternative is used in the 5 most similar protocols
Flow cytometry was performed on lymphocytes isolated from the above-mentioned tissues. All tissues were finely cut, transferred into PBS containing 1 mg/mL collagenase (034-22363, Wako, Osaka, Japan), and incubated at 37 °C for 10 min in a shaking water bath. The digested tissues were washed with PBS and filtered through a 40-μm stainless steel mesh to separate the cells from the excess tissue debris. To detect leukocytes, 1 × 106 leukocytes were incubated with rabbit anti-CD45 antibody (1:200; Abcam, Cambridge, MA, USA) for 60 min, rinsed, and then incubated with Alexa Fluor 647 donkey anti-rabbit IgG antibody (1:200; Molecular Probes, Leiden, The Netherlands) for 1 h. Finally, the cell suspensions were fixed in 500 μL of 1% formalin in PBS. The number and percentage of FITC+/CD45+ mononuclear cells in tissue was analysed on a Gallios™ flow cytometer (Beckman Coulter Inc., Fullerton, CA, USA) based on forward and side light scattering properties (Fig. 1c). A total of 104 events per sample were collected, and positive cells were expressed as a proportion of mononuclear cells. Rabbit IgG isotype controls (Abcam) were used to detect non-specific staining and establish the criteria for positive cell populations (data not shown).
+ Open protocol
+ Expand
2

Immunostaining for GCA Diagnosis

Check if the same lab product or an alternative is used in the 5 most similar protocols
For each section that contained VZV antigen, an adjacent section (within 5 μm) was stained with hematoxylin-eosin. Slides were examined by standard light microscopy by the neuropathologist (P.J.B.) and neurovirologists (D.G. and M.A.N.) for GCA positivity, defined based on the following: (1) the presence of transmural inflammation; (2) medial necrosis or other damage or disruption; and (3) giant or epithelioid macrophages. A TA section was deemed GCA positive only when all readers agreed that all 3 criteria were met. If a TA section was deemed GCA negative but was suspected to contain inflammatory cells, the hematoxylin-eosin–stained section was destained using acid alcohol and immunostained with rabbit anti-CD45 antibody (1:000 dilution; Abcam) using antigen retrieval as previously described.1 (link) Positive controls consisted of FFPE human lymph nodes obtained post mortem and sections were examined by light microscopy by neurovirologists (D.G. and M.A.N.). A TA section was deemed positive for inflammation when both readers agreed that 10 or more cells expressed CD45 in a field (magnification ×600).
+ Open protocol
+ Expand
3

Immunostaining for VZV Antigen Cell Type

Check if the same lab product or an alternative is used in the 5 most similar protocols
To identify the cell type containing VZV antigen, sections adjacent to those containing VZV antigen in nerve bundles were immunostained with multiple antibodies as previously described1 (link): rabbit anti-claudin-1 IgG, rabbit anti-S-100 antibody, and mouse antimyelin basic protein antibody (all at 1:1000 dilution; Abcam); mouse anti–βIII tubulin antibody (1: 1000 dilution; StemCell Technologies); and rabbit anti-CD45 antibody (1:100 dilution; Abcam). Positive controls consisted of FFPE human trigeminal ganglia and lymph nodes obtained post mortem.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!