The largest database of trusted experimental protocols

Er 049x

Manufactured by Bruker

The ER-049X is a high-performance electron paramagnetic resonance (EPR) spectrometer designed for advanced spectroscopic analysis. It provides researchers with a reliable and efficient tool for investigating the electronic structure and dynamics of paramagnetic species in a wide range of materials and samples.

Automatically generated - may contain errors

2 protocols using er 049x

1

EPR Spectroscopy of ThCfd1–HisThNbp35 Complex

Check if the same lab product or an alternative is used in the 5 most similar protocols
For EPR spectroscopy, chemically reconstituted ThCfd1–HisThNbp35 complex (40 μM) was anaerobically reduced with sodium dithionite (200 μM). Samples were shock-frozen after incubation for 3 min. X-band EPR derivative spectra were recorded on a Bruker ELEXSYS E500 spectrometer equipped with a Bruker dual mode cavity (ER4116DM) and a helium flow cryostat (Oxford Instruments ESR 900). The microwave bridge was a high-sensitivity Super-X bridge (Bruker ER-049X) with integrated microwave frequency counter. The magnetic field controller (ER032T) was calibrated with a Bruker NMR field probe (ER035M). EPR simulations were performed with the self-made routine esim_gfit (by E.B.).
+ Open protocol
+ Expand
2

Continuous-wave EPR Spectroscopy Methodology

Check if the same lab product or an alternative is used in the 5 most similar protocols
Continuous-wave (cw) X-band EPR measurements
were performed on a Bruker E500 ELEXSYS spectrometer equipped with
the Bruker dual-mode cavity (ER4116DM) or a standard cavity (ER4102ST)
and an Oxford Instruments helium flow cryostat (ESR 900). The microwave
bridge was a high-sensitivity Super-X bridge (Bruker ER-049X) with
integrated microwave frequency counter. The magnetic field controller
(ER032T) was calibrated with a Bruker NMR field probe (ER035M). EPR
simulations have been done with our own routines, esim_gfit and esim_sx.
For spin quantitation, the experimental derivative spectra were numerically
integrated by using the routine eview, and the results were corrected
for their g value dependence for field-swept spectra
by using Aasa and Vänngård approximation,32 (link) i.e. dividing the integrals by the factor,
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!