The largest database of trusted experimental protocols

Easy spray pepmap rslc

Manufactured by Thermo Fisher Scientific

The Easy-Spray PepMap® RSLC is a liquid chromatography column designed for peptide separation. It features a reversed-phase stationary phase and is suitable for high-performance liquid chromatography (HPLC) and ultra-high-performance liquid chromatography (UHPLC) applications.

Automatically generated - may contain errors

3 protocols using easy spray pepmap rslc

1

Peptide Separation Using Nano-LC

Check if the same lab product or an alternative is used in the 5 most similar protocols
All peptide separations were carried out using an Ultimate 3000 nano system (Dionex, Thermo Fisher Scientific). For each analysis the sample was loaded onto a trap column (Acclaim PepMap 100, 2 cm × 75 μm inner diameter, C18, 3 μm, 100 Å) at 5 μL/min with an aqueous solution containing 0.1% (v/v) TFA and 2% (v/v) acetonitrile. After 3 min, the trap column was set in-line with an analytical column (Easy-Spray PepMap® RSLC 15 cm × 75 μm inner diameter, C18, 2 μm, 100 Å (Dionex). Peptide elution was performed by applying a mixture of solvents A and B. Solvent A was HPLC grade water with 0.1% (v/v) formic acid, and solvent B was HPLC grade acetonitrile 80% (v/v) with 0.1% (v/v) formic acid. Separations were performed by applying a linear gradient of 3.8% to 50% solvent B over 30 min at 300 nL/min followed by a washing step (5 min at 99% solvent B) and an equilibration step (15 min at 3.8% solvent B).
+ Open protocol
+ Expand
2

LC-MS/MS Analysis of BALF Peptides

Check if the same lab product or an alternative is used in the 5 most similar protocols
Peptides were analysed by LC-MS/MS using an Ultimate 3000 nano system (Dionex/Thermo Fisher Scientific, Hemel Hempstead, UK) coupled to a Q-Exactive-HF mass spectrometer (Thermo Fisher Scientific, Hemel Hempstead, UK) to acquire the masses of peptides derived from proteins extracted from the BALF samples. Peptides were loaded onto a trap column (50 cm) (Acclaim Pepmap 100) at 12 µl/min over 7 min with an aqueous solution containing 0.1% (v/34v) TFA and 2% (v/v) acetonitrile. The trap column was set in-line with an analytical column (Easy-Spray Pepmap® RSLC) (Dionex). Peptides were eluted by applying a linear gradient of 3.8–50% solvent B (acetonitrile 80% (v/v) with 0.1% (v/v) formic acid FA over 35 min at 300 nl/min. Solvent A was HPLC grade water with 0.1% (v/v) formic acid. The mass spectrometer was operated in data dependent positive (ESI+) mode and full scan MS spectra (350–2000 m/z) were acquired in the Orbitrap. The 16 most intense multiply charged ions (z ≥ 2) were sequentially isolated and fragmented in the octopole collision cell by high energy collisional dissociation (HCD) and detected in the Orbitrap.
+ Open protocol
+ Expand
3

LC-MS/MS Proteomic Workflow for Peptide Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
LC-MS/MS analysis was conducted on a Dionex 3000 coupled in line to a Q-Exactive-HF mass spectrometer. Digests were loaded onto a trap column (Acclaim PepMap 100, 2 cm × 75 µm inner diameter, C18, 3 microM, 100 ˚A) at 5 µL per min in 0.1%(v/v) TFA and 2%(v/v) acetonitrile. After 3 min, the trap column was set in line with an analytical column (Easy-Spray PepMap® RSLC 15 × 50 cm inner diameter, C18, 2 microlM, 100 ˚A) (Dionex). Peptides were loaded in 0.1%(v/v) formic acid and eluted with a linear gradient of 3.8–50% buffer B (HPLC grade acetonitrile 80%(v/v) with 0.1%(v/v) formic acid) over 95 min at 300 nl per min, followed by a washing step (5 min at 99% solvent B) and an equilibration step (25 min at 3.8% solvent). All peptide separations were carried out using an Ultimate 3000 nano system (Dionex/Thermo Fisher Scientific). The Q-Exactive-HF was operated in data-dependent mode with survey scans aquired at a resolution of 60,000 at 200 m/z over a scan range of 350–2000 m/z. The top 16 most abundant ions with charge states +2 to +5 from the survey scan were selected for MS2 analysis at 60,000 m/z resolution with an isolation window of 0.7 m/z, with a (N)CE of 30%. The maximum injection times were 100 and 90 ms for MS1 and MS2, respectively, and AGC targets were 3e6 and 1e5, respectively. Dynamic exclusion (20 s) was enabled.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!