The largest database of trusted experimental protocols

Ea model ce 1100

Manufactured by Thermo Fisher Scientific
Sourced in Germany

The EA model CE 1100 is a compact and efficient elemental analyzer designed for the determination of carbon, hydrogen, nitrogen, and sulfur content in a variety of sample types. It operates on the principle of complete combustion followed by gas chromatographic separation and thermal conductivity detection.

Automatically generated - may contain errors

2 protocols using ea model ce 1100

1

Preparation of 13C-labeled Plant Litter

Check if the same lab product or an alternative is used in the 5 most similar protocols
13C labeled plant foliar litter was produced in glass chambers in the greenhouse by growing Dysphania ambrosioides (formerly Chenopodium ambrosioides), a temperate herb with vermiculite as a substrate. A constant supply of 13CO2 (∼1 atom% 13C) at 400 ppm was maintained in continuous flow-through growth chambers. The mesocosms were uniformly watered with an automated irrigation system; and additional light was provided 12 h per day. After 3 months of growth, plants were harvested; leaves were separated, dried at 40°C, shredded and ground in a ball-mill. The product was subsequently sieved (<500 μm) and the finer powder was used for soil application. An aliquot was taken for 13C analysis on elemental analyzer coupled to an isotope ratio mass spectrometer (EA model CE 1100 coupled on-line via a Con Flo III[27] interface with a Delta + isotope ratio mass spectrometer; all supplied by Thermo Fisher Scientific, Germany). Fifty milligram of plant leaf litter (2.1 ± 0.1 atom%) was added to each soil mesocosm that was equivalent to 531.3 ± 21.5 μg13C.
+ Open protocol
+ Expand
2

Measuring Soil Organic Carbon Isotopes

Check if the same lab product or an alternative is used in the 5 most similar protocols
Before13C analysis of bulk soil organic carbon, dried soil was ground using a ball-mill and acidified to remove carbonates. After drying, plant parts were shredded and ground in a ball-mill (Kramer and Gleixner, 2008 (link)). Bulk 13C analysis of SOM and plant material was performed on an elemental analyzer coupled to an isotope ratio mass spectrometer (EA model CE 1100 coupled on-line via a Con Flo III[27] interface with a Delta+ isotope ratio mass spectrometer; all supplied by Thermo Fisher Scientific, Germany). To measure the plant and soil respired 13CO2, three plant pots were placed into a 2000 L airtight glass chamber in the dark (post sunset) at 1, 2, 4, 7, 14, and 21 days after pulse labeling of plants. The concentration of CO2 in the chamber and its 13C content was continuously monitored for 90 min at each time point using a Picarro 2101i (Picarro Inc., Santa Clara, CA, USA). To estimate the δ13C value of total respired CO2, the reciprocal of CO2 concentration was plotted against δ13C value of chamber CO2 over the analysis period (Keeling plot), with the y-intercept representing the δ13C value of total respired CO2 (Pataki et al., 2003 (link)).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!