The largest database of trusted experimental protocols

Thp 1

Manufactured by Beyotime
Sourced in China

The THP-1 is a cell line derived from an acute monocytic leukemia patient. It is a widely used model for studying monocyte and macrophage biology.

Automatically generated - may contain errors

3 protocols using thp 1

1

Generating Tumor-Associated Macrophages from THP-1 Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
The human monocyte cell line THP-1 and CRC cell lines (SW480, HCT116, LoVo, and RKO) were obtained from the Shanghai Institute of Biochemistry and Cell Biology (Shanghai, China). Lentiviruses carrying full-length CPEB3 or short hairpin RNA (shRNA_CPEB3) sequences targeting against human CPEB3 mRNA and matched negative controls were constructed by the Shanghai Institute of Biochemistry and Cell Biology. SW480, HCT116, LoVo and RKO cells were transfected with the indicated lentivirus overnight, then 2 μg/mL puromycin was added after 72 h of transfection to obtain stably transfected CRC cells. For macrophage generation, THP-1 cells were treated with 100 ng/mL phorbol- 12-myristate-13-acetate (PAM) (Beyotime, Shanghai, China) for 12 h to differentiate into adhered macrophages. To obtain TAM supernatants, CRC cells were seeded in 0.4-μm pore inserts, then transferred to a 6-well plate seeded with THP-1 macrophages in advance and co-cultured for another 24 h. For co-culture experiments, stably transfected CRC cells were co-cultured with THP-1 macrophages for another 24 h.
+ Open protocol
+ Expand
2

Modulating CRC Progression via CPEB3

Check if the same lab product or an alternative is used in the 5 most similar protocols
The human monocyte cell line THP-1 and CRC cell lines (SW480, HCT116, LoVo, and RKO) were obtained from the Shanghai Institute of Biochemistry and Cell Biology (Shanghai, China). Lentiviruses carrying fulllength CPEB3 or short hairpin RNA (shRNA_CPEB3) sequences targeting against human CPEB3 mRNA and matched negative controls were constructed by the Shanghai Institute of Biochemistry and Cell Biology. SW480, HCT116, LoVo and RKO cells were transfected with the indicated lentivirus overnight, then 2 μg/mL puromycin was added after 72 h of transfection to obtain stably transfected CRC cells. For macrophage generation, THP-1 cells were treated with 100 ng/mL phorbol-12-myristate-13-acetate (PAM) (Beyotime, Shanghai, China) for 12 h to differentiate into adhered macrophages. To obtain TAM supernatants, CRC cells were seeded in 0.4-μm pore inserts, then transferred to a 6-well plate seeded with THP-1 macrophages in advance and co-cultured for another 24 h. For co-culture experiments, stably transfected CRC cells were co-cultured with THP-1 macrophages for another 24 h.
+ Open protocol
+ Expand
3

Modulating CRC Progression via CPEB3

Check if the same lab product or an alternative is used in the 5 most similar protocols
The human monocyte cell line THP-1 and CRC cell lines (SW480, HCT116, LoVo, and RKO) were obtained from the Shanghai Institute of Biochemistry and Cell Biology (Shanghai, China). Lentiviruses carrying fulllength CPEB3 or short hairpin RNA (shRNA_CPEB3) sequences targeting against human CPEB3 mRNA and matched negative controls were constructed by the Shanghai Institute of Biochemistry and Cell Biology. SW480, HCT116, LoVo and RKO cells were transfected with the indicated lentivirus overnight, then 2 μg/mL puromycin was added after 72 h of transfection to obtain stably transfected CRC cells. For macrophage generation, THP-1 cells were treated with 100 ng/mL phorbol-12-myristate-13-acetate (PAM) (Beyotime, Shanghai, China) for 12 h to differentiate into adhered macrophages. To obtain TAM supernatants, CRC cells were seeded in 0.4-μm pore inserts, then transferred to a 6-well plate seeded with THP-1 macrophages in advance and co-cultured for another 24 h. For co-culture experiments, stably transfected CRC cells were co-cultured with THP-1 macrophages for another 24 h.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!