The largest database of trusted experimental protocols

Oudrasperse wb 3001

Manufactured by Dow

OUDRASperse™ WB 3001 is a water-based dispersant product manufactured by Dow. It is designed to disperse and stabilize solid particles in aqueous systems.

Automatically generated - may contain errors

Lab products found in correlation

7 protocols using oudrasperse wb 3001

1

Pine Wafer Epoxy Treatment Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 3

A pine wafer (southern yellow pine, 4 cm×2 cm×0.5 cm) is held at the bottom of a Parr reactor by a weight (here a ring is used). The reactor pressure is set to vacuum for 30 minutes. 80 ml of a dispersion comprising 20 percent by weight (solid concentration) OudraSperse™ WB 3001 waterborne epoxy dispersion (available from The Dow Chemical Company) and 80 percent by weight water is introduced to the reactor. The reactor pressure is then set to 1.03 MPa for 60 minutes under nitrogen. The wafer is then placed in an oven and dried in air at 80° C. for 1 week. The treated wafer and a control wafer are each processed according to the E4-11 procedure. The percent swelling for the treated wafer is 3.2%; the WRE of the treated wafer is 32.7%. The hardness of the treated wafer is measured as 42 using a Type D Durometer.

+ Open protocol
+ Expand
2

Impregnation of Pine Wafer with Polymer Dispersion

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 2

A pine wafer (southern yellow pine, 4 cm×2 cm×0.5 cm) is held at the bottom of a Parr reactor by a weight (here a ring is used). The reactor pressure is set to vacuum for 30 minutes. An aqueous polymer dispersion is prepared comprising 20 percent by weight PRIMACOR™ 5980 (60% DoN with MEA, 8.4 pH, particle size of 74 nm) and 80 percent by weight water. An epoxy dispersion (OUDRASperse™ WB 3001 manufactured by The Dow Chemical Company) is prepared comprising 60 percent by weight dispersion solid and 40 percent by weight water. 80 ml of a dispersion comprising 67 percent by weight aqueous polymer dispersion and 33 percent by weight epoxy dispersion is introduced to the reactor. The reactor pressure is then set to 1.03 MPa for 60 minutes under nitrogen. The wafer is then placed in an oven and air dried at 60° C. for 48 hours, thereby providing a treated wafer. The treated wafer and the control wafer are each processed according to the E4-11 procedure. The percent swelling for the treated wafer is 1.1%; the WRE of the treated wafer is 76%. The hardness of the treated wafer is measured as 62.5 using a Type D Durometer.

+ Open protocol
+ Expand
3

Pine Wafer Treatment with Waterborne Epoxy

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

A pine wafer (southern yellow pine, 4 cm×2 cm×0.5 cm) is held at the bottom of a Parr reactor by a weight (here a ring is used). The reactor pressure is set to vacuum for 30 minutes. 80 ml of a dispersion comprising 45 percent by weight (solid concentration) OudraSperse™ WB 3001 waterborne epoxy dispersion (available from The Dow Chemical Company) and 55 percent by weight water is introduced to the reactor. The reactor pressure is then set to 1.03 MPa for 60 minutes under nitrogen. The wafer is then placed in an oven and dried in air at 80° C. for 1 week. The treated wafer and a control wafer are each processed according to the E4-11 procedure. The percent swelling for the treated wafer is 0.43%; the WRE of the treated wafer is 90.0%. The hardness of the treated wafer is measured as 50 using a Type D Durometer.

+ Open protocol
+ Expand
4

Impregnation of Pine Wafer with Polymer Dispersion

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 2

A pine wafer (southern yellow pine, 4 cm×2 cm×0.5 cm) is held at the bottom of a Parr reactor by a weight (here a ring is used). The reactor pressure is set to vacuum for 30 minutes. An aqueous polymer dispersion is prepared comprising 20 percent by weight PRIMACOR™ 5980 (60% DoN with MEA, 8.4 pH, particle size of 74 nm) and 80 percent by weight water. An epoxy dispersion (OUDRASperse™ WB 3001 manufactured by The Dow Chemical Company) is prepared comprising 60 percent by weight dispersion solid and 40 percent by weight water. 80 ml of a dispersion comprising 67 percent by weight aqueous polymer dispersion and 33 percent by weight epoxy dispersion is introduced to the reactor. The reactor pressure is then set to 1.03 MPa for 60 minutes under nitrogen. The wafer is then placed in an oven and air dried at 60° C. for 48 hours, thereby providing a treated wafer. The treated wafer and the control wafer are each processed according to the E4-11 procedure. The percent swelling for the treated wafer is 1.1%; the WRE of the treated wafer is 76%. The hardness of the treated wafer is measured as 62.5 using a Type D Durometer.

+ Open protocol
+ Expand
5

Pine Wafer Polymer Impregnation Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

A pine wafer (southern yellow pine, 4 cm×2 cm×0.5 cm) is held at the bottom of a Parr reactor by a weight (here a ring is used). The reactor pressure is set to vacuum for 30 minutes. An aqueous polymer dispersion is prepared comprising 20 percent by weight PRIMACOR™ 5980 (60% DoN with MEA, 8.4 pH, particle size of 74 nm) and 80 percent by weight water. An epoxy dispersion (OUDRASperse™ WB 3001 manufactured by The Dow Chemical Company) is prepared comprising 60 percent by weight dispersion solid and 40 percent by weight water. 80 ml of a dispersion comprising 50 percent by weight aqueous polymer dispersion and 50 percent by weight epoxy dispersion is introduced to the reactor. The reactor pressure is then set to 1.03 MPa for 60 minutes under nitrogen. The wafer is then placed in an oven and air dried at 60° C. for 2 weeks, thereby providing a treated wafer. The treated wafer and the control wafer are each processed according to the E4-11 procedure. The percent swelling for the treated wafer is 1.6%; the WRE of the treated wafer is 65%. The hardness of the treated wafer is measured as 56 using a Type D Durometer.

+ Open protocol
+ Expand
6

Pine Wafer Polymer Impregnation Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

A pine wafer (southern yellow pine, 4 cm×2 cm×0.5 cm) is held at the bottom of a Parr reactor by a weight (here a ring is used). The reactor pressure is set to vacuum for 30 minutes. An aqueous polymer dispersion is prepared comprising 20 percent by weight PRIMACOR™ 5980 (60% DoN with MEA, 8.4 pH, particle size of 74 nm) and 80 percent by weight water. An epoxy dispersion (OUDRASperse™ WB 3001 manufactured by The Dow Chemical Company) is prepared comprising 60 percent by weight dispersion solid and 40 percent by weight water. 80 ml of a dispersion comprising 50 percent by weight aqueous polymer dispersion and 50 percent by weight epoxy dispersion is introduced to the reactor. The reactor pressure is then set to 1.03 MPa for 60 minutes under nitrogen. The wafer is then placed in an oven and air dried at 60° C. for 2 weeks, thereby providing a treated wafer. The treated wafer and the control wafer are each processed according to the E4-11 procedure. The percent swelling for the treated wafer is 1.6%; the WRE of the treated wafer is 65%. The hardness of the treated wafer is measured as 56 using a Type D Durometer.

+ Open protocol
+ Expand
7

Waterborne Epoxy Treatment of Pine Wafer

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 2

A pine wafer (southern yellow pine, 4 cm×2 cm×0.5 cm) is held at the bottom of a Parr reactor by a weight (here a ring is used). The reactor pressure is set to vacuum for 30 minutes. 80 ml of a dispersion comprising 30 percent by weight (solid concentration) OudraSperse™ WB 3001 waterborne epoxy dispersion (available from The Dow Chemical Company) and 70 percent by weight water is introduced to the reactor. The reactor pressure is then set to 1.03 MPa for 60 minutes under nitrogen. The wafer is then placed in an oven and dried in air at 80° C. for 1 week. The treated wafer and a control wafer are each processed according to the E4-11 procedure. The percent swelling for the treated wafer is 1.47%; the WRE of the treated wafer is 68.7%. The hardness of the treated wafer is measured as 45 using a Type D Durometer.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!