The largest database of trusted experimental protocols

J w db 5ms capillary column

Manufactured by Agilent Technologies
Sourced in United States

The J & W DB-5MS capillary column is a gas chromatography column designed for a wide range of applications. It is a fused silica column with a 5% phenyl-95% dimethylpolysiloxane stationary phase. The column is suitable for the separation and analysis of a variety of organic compounds.

Automatically generated - may contain errors

3 protocols using j w db 5ms capillary column

1

Wheat Straw Composition Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
The composition of cellulose, hemicellulose, and lignin in non-pretreated, oxygen-gas-pretreated, and oxygen-radical-pretreated wheat straw was determined according to previously described methods [39 , 40 (link)]. Oxygen-gas- and oxygen-radical-pretreated wheat-straw samples were extracted with water to remove inhibitors for enzymatic reactions. Each treatment portion was washed separately at a weight ratio of 1:10 of pretreated wheat-straw samples to 25 °C Milli-Q water. The mixture was stirred at 100 rpm for 60 min, and the extract was filtered through a nylon membrane (pore size: 0.45 μm). The liquid fraction was lyophilized, trimethylsilylated, and analyzed using a GCMS-QP2010 (Shimadzu) equipped with a J & W DB-5MS capillary column (30 m × 0.25 mm internal diameter × 0.25 μm film thickness; Agilent Technologies, Santa Clara, California, USA) [41 (link)].
+ Open protocol
+ Expand
2

Analytical Methods for Sake Characterization

Check if the same lab product or an alternative is used in the 5 most similar protocols
Sake meter value, sake acidity, and amino acid levels were measured as previously described6 . Organic acids were quantified using HPLC with a Shim-pack SCR-102H column (Shimadzu, Kyoto, Japan). Aroma components were quantified using headspace GC with a J & W DB-WAX capillary column (30 m × 0.32 mm internal diameter × 0.50 μm film thickness; Agilent Technologies, Santa Clara, California, USA). Ethanol concentration was measured using an ethanol analyser (RIKEN KEIKI, Tokyo, Japan). Sugars were determined by monitoring post-column derivative reducing sugars separated using a Prominence reducing-sugar HPLC analytical system (Shimadzu) equipped with a fluorescence detector. Sake fermented with MC87-46 and K901 was separated on a Shim-pack 4.0 × 250-mm ISA-07/S2504 column (Shimadzu) with a linear gradient of 0.1 M potassium borate buffer (pH 8.0) and 0.4 M potassium borate buffer (pH 9.0) for 140 min at a flow rate of 0.6 mL/min37 (link),38 (link). Sugars were also lyophilized, trimethylsilylated, and analysed using a GCMS-QP2010 (Shimadzu) equipped with a J & W DB-5MS capillary column (30 m × 0.25 mm internal diameter × 0.25 μm film thickness; Agilent Technologies)39 (link).
+ Open protocol
+ Expand
3

GC-MS Analysis of Bioactive Compounds

Check if the same lab product or an alternative is used in the 5 most similar protocols
The GC-MS analysis was performed using an Agilent 7890B GC with the split-splitless inlet, coupled to a 7010 Triple Quadrupole (MS/MS) system from Agilent, equipped with EI ion source. The system was operated by MassHunter Software with MSD ChemStation. The separation was carried out on an Agilent J&W DB-5 ms capillary column (30 m × 0.25 mm i.d., 0.25 mm film thickness). Helium (purity 99.999%) was employed as carrier gas at a constant column flow of 1.0 mL/min. The GC oven temperature was programmed from 50 °C (held 1 min) to 270 °C at 10 °C/min (held 5 min). The temperature of the transfer line, the quadrupole and the ion source were set at 280, 150 and 230 °C respectively. The injector temperature was set at 250 °C. The injector was operating in the split-less mode and programmed to return to the split mode after 2 min from the beginning of a run. The MSD was operated in full scan acquisition mode. Mass spectra deconvolution of chromatographic signals and tentative identification of unknown bioactive compounds was carried out using the Agilent MassHunter Unknown Analysis tool and the NIST Mass Spectral Library (NIST MS Search 2.0).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!