The largest database of trusted experimental protocols

Alexa fluor 594 conjugated griffonia simplicifolia isolectin b4

Manufactured by Thermo Fisher Scientific

Alexa Fluor® 594-conjugated Griffonia simplicifolia isolectin B4 is a fluorescently-labeled lectin used for the detection and visualization of specific cell types, particularly endothelial cells and microvascular structures. It binds to terminal α-D-galactose residues on glycoproteins and glycolipids.

Automatically generated - may contain errors

3 protocols using alexa fluor 594 conjugated griffonia simplicifolia isolectin b4

1

Quantifying Choroidal Neovascularization in Mice

Check if the same lab product or an alternative is used in the 5 most similar protocols
Anesthetized mice were perfused through the left ventricle with PBS followed by 5 mg/ml fluorescein isothiocyanate (FITC)-labeled dextran (MW=10,000 Da; Sigma, St. Louis, MO). The eyes were enucleated and fixed in a 4% paraformaldehyde solution. The anterior segment and retina were removed from the eyecup, and the remaining RPE/choroid/sclera complexes were flatmounted after four radial incisions. The dissected RPE/choroid/sclera were treated with blocking solution (5% BSA, 5% normal donkey serum, and 0.5% Triton X-100 in PBS) for 1 h at room temperature and incubated with Alexa Fluor® 594-conjugated Griffonia simplicifolia isolectin B4 (1:100 dilution; Invitrogen) overnight at 4 °C. The samples were washed three times with PBS and mounted sclera side down on microscope slides. Images of CNV lesions were obtained using a fluorescence microscope (Olympus), and the CNV area in each image was calculated using ImageJ software (NIH). For the analysis of CNV volumes, Z-stack images of CNV lesions were acquired with an LSM780 confocal microscope (Zeiss, Jena, Germany). The sum of the CNV area in each Z-stack layer (multiplied by 5-μm thickness) was used as the volume of the CNV lesion [11 (link)].
+ Open protocol
+ Expand
2

Immunofluorescence Analysis of Eye Tissue

Check if the same lab product or an alternative is used in the 5 most similar protocols
The eyes were enucleated, fixed, embedded in optimum cutting temperature (OCT) compound (Sakura Finetek, Torrance, CA) or paraffin, sectioned, and mounted on slides. First, the endogenous peroxidase activity in the tissues was quenched. The sections were blocked with 10% normal goat serum and were then incubated with primary immunoglobulin G (IgG) against phospho-Y416 Src (p-Y416 Src; Invitrogen) or glial fibrillary acidic protein (GFAP; Dako), followed by the appropriate fluorescent secondary IgG (Dako). Blood vasculature was visualized by costaining with Alexa Fluor® 594-conjugated Griffonia simplicifolia isolectin B4 (Invitrogen). Cell nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI; Vector Laboratories, Burlingame, CA). The images were acquired using a fluorescence microscope (Olympus), and six to eight sections were examined per group.
+ Open protocol
+ Expand
3

Retinal Neovascular Tuft Quantification

Check if the same lab product or an alternative is used in the 5 most similar protocols
The eyes were enucleated and fixed overnight in 4% paraformaldehyde. The retinas were isolated, cut four times from the edge to the center, soaked in blocking solution (5% BSA [BSA], 5% normal donkey serum, and 0.5% Triton X-100 in PBS), and then incubated overnight at 4 °C with Alexa Fluor® 594-conjugated Griffonia simplicifolia isolectin B4 (1:100 dilution; Invitrogen, Carlsbad, CA) in PBS containing 1 mM CaCl2. Retinas were rinsed three times with PBS, flatmounted on microscope slides, and embedded in fluorescent mounting medium (Dako, Carpinteria, CA). Images of the whole-mounted retina were captured using a fluorescence microscope (Olympus, Tokyo, Japan); the exposure and gain were kept constant for all samples. In each image, the number of pixels in the preretinal neovascular tufts was determined using ImageJ software (National Institutes of Health, Bethesda, MD) and was expressed as a percentage of the number of pixels in the entire retinal area.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!