The largest database of trusted experimental protocols

Eclipse ti microscope

Manufactured by PerkinElmer

The ECLIPSE Ti microscope is a high-performance inverted fluorescence microscope designed for advanced imaging applications. It features a modular design, allowing for customization to meet specific research needs. The microscope's core function is to provide high-quality, high-resolution imaging capabilities for a variety of cell and tissue samples.

Automatically generated - may contain errors

2 protocols using eclipse ti microscope

1

Live-Cell Imaging of Yeast Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
Aliquots of cells in early log phase were placed on a pad of agar (2% (w/v) agarose in EMMG, 100 μg ml−1 uridine, 100 μg ml−1 leucine) on a microscope slide. A coverslip was placed on top and sealed with VALAP (Vaseline, Lanolin, Paraffin wax in a 1:1:1 mix). Slides were incubated at 25 °C or 35 °C for > 1 hour prior to imaging. A heated microscope stage was used to maintain the temperature during imaging using a spinning disk confocal microscope: PerkinElmer UltraVIEW VoX confocal imaging system with a Yokagawa CSU-X1 disk unit, Hamamatsu ORCA-R2 camera and a Nikon ECLIPSE Ti microscope controlled by PerkinElmer Volocity v 6.1 software. Images were captured at 0.1 fps using a 100 × 1.4NA objective and 2x camera binning, giving an equivalent pixel size of 139 nm.
+ Open protocol
+ Expand
2

Real-Time Imaging of DNA Damage Response

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cells were seeded in 1 glass bottom well chamber one day before analysis and pre-sensitized with 10 μM bromodeoxyuridine (BrdU, GE Healthcare) for 24 h. Before laser irradiation, cells were incubated with 1 µM THZ1 (1604810-83-4) for 1 h, at 37 °C and 5% CO2. The cells were then maintained under the same conditions using the Temperature Control Chamber (PerkinElmer UltraView VoX), and images were taken with a Nikon Eclipse Ti microscope equipped with a 63x oil objective and equipped with a Perkin Elmer spinning disk. Images were collected every 4 s for 10 min after irradiation. Cellular nuclei were irradiated with a 355 nm UV ablation laser at a power setting of 0.15, a repetition rate of 200 Hz, a pulse energy >60 μJ, pulse length< 4 ns (Rapp OptoElectronic). The intensity of the GFP signal was measured using ImageJ software for at least 20 cells per condition from three biological replicates.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!