The largest database of trusted experimental protocols

Threose

Manufactured by Merck Group
Sourced in United States

Threose is a laboratory equipment product manufactured by Merck Group. It is a monosaccharide that serves as a core function in various biochemical processes. The detailed specifications and intended uses of Threose are not available for an unbiased and factual description.

Automatically generated - may contain errors

2 protocols using threose

1

Quantification of Citreoviridin in Rice

Check if the same lab product or an alternative is used in the 5 most similar protocols
Except where noted otherwise, deionized water (Nanopure II, Thermo Scientific, Waltham, MA, USA) was used in the preparation of all reagents. The primary analytical standard of CTV was produced by Hayashi Pure Chemical Ind., Ltd. (Osaka, Japan). For spiking of rice samples, a standard material containing both CTV and iso-CTV prepared at the USDA-NCAUR (Peoria, IL, USA) was used [21 (link)]. Acetonitrile and methanol were HPLC grade and were purchased from Fisher Scientific (Hampton, NH, USA), as was polyvinyl alcohol (PVA). 1-1′carbonyldiimidazole (CDI), 4,6-dimethyl-2-oxo-2H-pyran-5-carboxylic acid (IDHA), 4,6-dimethyl-α-pyrone (DMP), and threose were purchased from Sigma-Aldrich (St. Louis, MO, USA). All other chemicals were reagent grade or better and purchased from major suppliers.
+ Open protocol
+ Expand
2

GC-MS Analysis of Irradiated Saccharides

Check if the same lab product or an alternative is used in the 5 most similar protocols
The irradiated and melted samples were evaporated under vacuum inside a vial vessel and analyzed for the presence of saccharides. The measurements were performed using a ITQ 1100 GC–Ion Trap MS system (ThermoScientific, USA), equipped with an Xcalibur MS Platform using a non–polar TG–SQC column (ThermoScientific, USA). 17 μL of hexamethyldisilazane (99% HMDS, CAS 999–97–3, Sigma Aldrich), 6 μL of chlorotrimethylsilane (99% TMCS, CAS 75–77–4, Sigma Aldrich), and 52 μL of pyridine (99.5% anhydrous, Scharlau) were added to the residue as derivatization agents and aprotic solvent, respectively. The vial was then heated at 70 °C for two hours. Subsequently, 0.5 μL of the sample was injected into the chromatograph, and the measurements were performed using a column temperature range of 180–280 °C with a temperature gradient of 30 °C min−1. The mass spectrum was compared with the GC chromatograms and MS spectra of D–forms of ribose, lyxose, xylose (99%), arabinose (98%), threose (60% syrup), ribulose (1 M solution) and xylulose and xylose (98% syrup) standards (all from Sigma Aldrich). Liquid–phase standards (i.e. threose, ribulose and xylulose) were evaporated under vacuum in the presence of phosphorus pentoxide prior to GC–MS analysis.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!