The largest database of trusted experimental protocols

Ratovapor r 210

Manufactured by Büchi
Sourced in United States

The Ratovapor R-210 is a rotary evaporator designed for efficient solvent removal and concentration of liquid samples. It features a controlled heating system and a motorized lift mechanism to facilitate the evaporation process. The core function of the Ratovapor R-210 is to provide a reliable and consistent method for concentrating solutions and recovering solvents in a laboratory setting.

Automatically generated - may contain errors

Lab products found in correlation

3 protocols using ratovapor r 210

1

Soil Pesticide Residue Extraction Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
The extraction of the soil samples was carried out by the method described by Frimpong et al. (2013 ), with slight modification from the Ghana Standard Authority (GSA) Pesticide Residues Laboratory Protocols. Ten grams (10 g) of the sub-soil samples were weighed and transferred into 250 ml separating flasks. A 10 ml of acetonitrile was added and the corked flasks sonicated (Grant XUB 18UK) for 5 min. An additional 10 ml of acetonitrile was added, and the separating flasks closed tightly. The content of the flasks were placed on a horizontal mechanical shaker (Ika-Werke HS 501 Digital), and was set to shake continuously for 30 min at 300 mot/min, and allowed to stand for 10 min to sufficiently separate the phases or layers. The supernatants (organic layers) were carefully transferred into 50 ml centrifuge tubes for centrifugation (Thermo/CR3i Multifunction) at 3000 rpm for 5 min. A 10 ml aliquot of the supernatants (organic phases/top layers) equivalent to 5.0 g soil weight were pipetted and dried/passed over 5 g anhydrous sodium sulphates through a filter paper into 50 ml round-bottom flasks. Then, 5 ml of acetonitrile was used to rinse the salt into the round-bottom flasks. The concentrates were then adjusted to about 2 ml using the rotary film evaporator (Buchi Ratovapor R-210, USA) at 35 °C, and made ready for the clean-up step.
+ Open protocol
+ Expand
2

Silica Cartridge Extraction and GC-ECD Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Silica (1000 mg/6 ml) cartridges which have 2 g layer of anhydrous sodium sulphate weighed on top was conditioned with 6 ml dichloromethane. The concentrated extracts were then loaded onto the cartridges, and 100 ml round-bottom flasks were placed under the columns to collect the eluates. A 20 ml dichloromethane was then used to elute the cartridges afterwards. The eluents collected were concentrated to dryness using the rotary film evaporator (Buchi Ratovapor R-210) set at 40 °C. The extracts were re-dissolved in 1 ml ethyl acetate by pipetting and carefully transferred into 2 ml standard opening vials prior to quantitation by gas chromatography (GC) (Varian Association Inc. USA) equipped with Electron Capture Detector (ECD). All extracts were kept frozen until quantification was achieved.
+ Open protocol
+ Expand
3

Silica Cartridge Extraction and GC Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Silica (1000 mg/6 ml) cartridges which have 1 g layer of anhydrous magnesium sulphate weighed on top was conditioned using 6 ml acetonitrile. A 50 ml pear shape flasks were placed under the columns in a vacuum manifold, and the concentrated extracts loaded onto the cartridges. The extracts were allowed to filter and the cartridges eluted with 10 ml of acetonitrile with slight intermittent vacuum use. The eluents collected were then concentrated to dryness using the rotary film evaporator (Buchi Ratovapor R-210) set at 40 °C. The extracts were re-dissolved in 1 ml ethyl acetate by pipetting and the dissolved extracts carefully transferred into labelled 2 ml chromatography (GC) standard opening vials prior to quantitation by gas chromatography (GC) (Varian Association Inc. USA) equipped with Electron Capture Detector (ECD). All extracts were kept frozen until quantification was achieved.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!