The largest database of trusted experimental protocols

Uplc c18 analytical column

Manufactured by Waters Corporation
Sourced in United States

The UPLC C18 analytical column is a high-performance liquid chromatography (HPLC) column designed for the separation and analysis of a wide range of analytes. The column utilizes sub-2 micron particle technology to provide efficient and rapid chromatographic separations. The C18 stationary phase is suitable for the analysis of a variety of organic compounds.

Automatically generated - may contain errors

2 protocols using uplc c18 analytical column

1

UPLC-ESI-QTOF-MS Analysis of Compounds

Check if the same lab product or an alternative is used in the 5 most similar protocols
UPLC-ESI-QTOF-MS analysis was performed on an Agilent 6540 accurate mass Q-TOF LC/MS system (Agilent Technologies, Santa Clara, CA, USA). Chromatography was performed on a UPLC C18 analytical column (2.1 ×  5 mm, I.D. 1.7 μm, ACQUITY UPLC® BEH, Waters, Milford, MA, USA). The mobile phase used for the elution of the column consisted of 0.1% (v/v) formic acid in water (solvent A) and 0.1% (v/v) formic acid in acetonitrile (solvent B). A gradient elution was performed as follows: 0–15 min, 10–45% B; 15–23 min, 45–70% B; 23–25 min, 70–100% B. The flow rate was set at 0.4 mL/min with an injection volume of 2 μL, whilst the column temperature was maintained at 40 °C.
Detection by ESI-QTOF-MS/MS was performed in positive ion mode. The source parameters were set as follows: gas temperature, 300 °C; gas flow, 8.0 L/min; nebulizer pressure, 45 psi; sheath gas temperature, 350 °C; sheath gas flow, 8.0 L/min. The scan source parameters were set as follows: VCap, 3500; nozzle voltage, 500 V; fragmentation voltage, 120 V. Reference masses were used at m/z 121.0508 (purine) and 922.0097 (hexakisphosphazine). Automatic MS/MS was performed using a fixed collision energy of 15 eV.
+ Open protocol
+ Expand
2

UHPLC-QTOF-MS Analysis of Metabolites

Check if the same lab product or an alternative is used in the 5 most similar protocols
UHPLC–QTOF-MS analysis was performed on an Agilent 6540 ultra-high definition accurate mass quadrupole time-of-flight spec-trometer with UHPLC (UHPLC–QTOF-MS, Agilent Technologies, U.S.A.). A UPLC C18 analytical column (2.1 mm × 100 mm, I.D. 1.7 μm, ACQUITY UPLC®BEH, Waters, U.S.A.) was used for separation, coupled with a C18 pre-column (2.1 mm × 5 mm, I.D. 1.7 μm, Van-GuardTM BEH, Waters, U.S.A.) at room temperature of 20 °C. The mobile phase was a mixture of water (A) and acetonitrile (B), both containing 0.1% formic acid, with an optimized linear gradient elution as follows: 0–5 min, 10–35% B; 5–25 min, 35–55% B; 25–28 min, 55–85% B; 28–30 min, 85–100% B. The injection volume was 4 μL. The flow rate was set at 0.35 mL/min. The mass spectra were acquired in negative mode by scanning from 100 to 1700 in mass to charge ratio (m/z). The MS analysis was performed under the following operation parameters: dry gas temperature 300 °C, dry gas (N2) flow rate 5 L/min, nebulizer pressure 30 psi, Vcap 3000, nozzle voltage 500 V, and fragmentor voltage 200 V.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!