The largest database of trusted experimental protocols

650 compound 1 nhs

Manufactured by Thermo Fisher Scientific

The 650 Compound 1-NHS is a lab equipment product offered by Thermo Fisher Scientific. It serves as a key component for various chemical reactions and processes in research and laboratory settings. The core function of this product is to facilitate specific chemical transformations without further interpretation or extrapolation on its intended use.

Automatically generated - may contain errors

3 protocols using 650 compound 1 nhs

1

Direct Fluorescent Labeling of Cell Proteins

Check if the same lab product or an alternative is used in the 5 most similar protocols

EXAMPLE 30

The inventive compounds and commercial dye were evaluated in direct fluorescence labeling of cell surface proteins. DyLight 649-NHS, 650 Compound 1-NHS, and Whole Cell Stain Orange (Thermo Fisher Scientific) were reconstituted in DMF and diluted to 6 μM in Dulbecco's PBS (DPBS). A total of four 1:1 serial dilutions of the dyes were prepared in DPBS. Frozen IMR90 cells (human lung embryonic fibroblast) on a plate were thawed for 1 h at 37° C. The cell plates were washed two times with DPBS and incubated with diluted dye for 30 min at room temperature, protected from light. The cell plates were then washed three times with DPBS. The cell plates were incubated with 100 μl/well of 1 μg/ml Hoechst dye in DPBS. The cell plates were sealed and imaged using the Thermo Scientific ArrayScan VTI HCS Reader.

As shown in FIG. 51, 650 Compound 1-NHS (row 3) performed equivalently as DyLight 649-NHS (row 2) and Whole Cell Stain Orange (row 1) at 6 μm (column A), 3 μm (column B), 1.5 μm (column C), and 0.75 μm (column D).

+ Open protocol
+ Expand
2

Cell Surface Protein Fluorescence Labeling

Check if the same lab product or an alternative is used in the 5 most similar protocols

EXAMPLE 30

The inventive compounds and commercial dye were evaluated in direct fluorescence labeling of cell surface proteins. DyLight 649-NHS, 650 Compound 1-NHS, and Whole Cell Stain Orange (Thermo Fisher Scientific) were reconstituted in DMF and diluted to 6 μM in Dulbecco's PBS (DPBS). A total of four 1:1 serial dilutions of the dyes were prepared in DPBS. Frozen IMR90 cells (human lung embryonic fibroblast) on a plate were thawed for 1 h at 37° C. The cell plates were washed two times with DPBS and incubated with diluted dye for 30 min at room temperature, protected from light. The cell plates were then washed three times with DPBS. The cell plates were incubated with 100 μl/well of 1 μg/ml Hoechst dye in DPBS. The cell plates were sealed and imaged using the Thermo Scientific ArrayScan VTI HCS Reader.

As shown in FIG. 51, 650 Compound 1-NHS (row 3) performed equivalently as DyLight 649-NHS (row 2) and Whole Cell Stain Orange (row 1) at 6 μm (column A), 3 μm (column B), 1.5 μm (column C), and 0.75 μm (column D).

+ Open protocol
+ Expand
3

Direct Fluorescent Labeling of Cell Surface Proteins

Check if the same lab product or an alternative is used in the 5 most similar protocols

EXAMPLE 30

The inventive compounds and commercial dye were evaluated in direct fluorescence labeling of cell surface proteins. DyLight 649-NHS, 650 Compound 1-NHS, and Whole Cell Stain Orange (Thermo Fisher Scientific) were reconstituted in DMF and diluted to 6 μM in Dulbecco's PBS (DPBS). A total of four 1:1 serial dilutions of the dyes were prepared in DPBS. Frozen IMR90 cells (human lung embryonic fibroblast) on a plate were thawed for 1 h at 37° C. The cell plates were washed two times with DPBS and incubated with diluted dye for 30 min at room temperature, protected from light. The cell plates were then washed three times with DPBS. The cell plates were incubated with 100 μl/well of 1 μg/ml Hoechst dye in DPBS. The cell plates were sealed and imaged using the Thermo Scientific ArrayScan VTI HCS Reader.

As shown in FIG. 51, 650 Compound 1-NHS (row 3) performed equivalently as DyLight 649-NHS (row 2) and Whole Cell Stain Orange (row 1) at 6 μm (column A), 3 μm (column B), 1.5 μm (column C), and 0.75 μm (column D).

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!