The largest database of trusted experimental protocols

Samba 420 sensor

Manufactured by Harvard Apparatus

The Samba 420 Sensor is a data acquisition device designed for recording and monitoring various physiological parameters. It features high-resolution analog-to-digital conversion and is capable of capturing data from multiple sensor inputs simultaneously. The core function of the Samba 420 Sensor is to reliably collect and transmit sensor data for analysis and research purposes.

Automatically generated - may contain errors

Lab products found in correlation

4 protocols using samba 420 sensor

1

Measurement of ICP Using Samba Sensor

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 6

ICP is monitored using a Samba 420 Sensor, pressure transducer, with a Samba 202 control unit (Harvard Apparatus, Holliston, MA). This ICP monitoring system consists of a 0.42 mm silicon sensor element mounted on an optical fiber. A 20-gauge syringe needle is implanted through the cisterna magna to a depth of ˜1 cm. The needle then acts as a guide for insertion of the Samba Sensor and the site of implantation and the open end of the needle are sealed with 100% silicone sealant. A baseline ICP reading is established followed by a water bolus IP injection (20% weight of animal) with or without Compound 1. ICP is monitored until the animal expires from the water load.

Adjusting for the slight rise in ICP observed in the animals when they are monitored without the water bolus injection (FIG. 9, No Water Toxicity), Compound 1 at 0.76 mg/kg reduces the relative rate of ICP rise by 36%, from 3.6×10−3 min−1 to 2.3×10−3 min−1 (n=6 mice/treatment, mean±SEM).

+ Open protocol
+ Expand
2

Intracranial Pressure Monitoring with Compound 1

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 6

ICP is monitored using a Samba 420 Sensor, pressure transducer, with a Samba 202 control unit (Harvard Apparatus, Holliston, Mass.). This ICP monitoring system consists of a 0.42 mm silicon sensor element mounted on an optical fiber. A 20-gauge syringe needle is implanted through the cisterna magna to a depth of ˜1 cm. The needle then acts as a guide for insertion of the Samba Sensor and the site of implantation and the open end of the needle are sealed with 100% silicone sealant. A baseline ICP reading is established followed by a water bolus IP injection (20% weight of animal) with or without Compound 1. ICP is monitored until the animal expires from the water load.

Adjusting for the slight rise in ICP observed in the animals when they are monitored without the water bolus injection (FIG. 9, No Water Toxicity), Compound 1 at 0.76 mg/kg reduces the relative rate of ICP rise by 36%, from 3.6×10−3 min−1 to 2.3×10−3 min−1 (n=6 mice/treatment, mean±SEM).

+ Open protocol
+ Expand
3

ICP Monitoring and Reduction with Compound 1

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 6

ICP is monitored using a Samba 420 Sensor, pressure transducer, with a Samba 202 control unit (Harvard Apparatus, Holliston, Mass.). This ICP monitoring system consists of a 0.42 mm silicon sensor element mounted on an optical fiber. A 20-gauge syringe needle is implanted through the cisterna magna to a depth of ˜1 cm. The needle then acts as a guide for insertion of the Samba Sensor and the site of implantation and the open end of the needle are sealed with 100% silicone sealant. A baseline ICP reading is established followed by a water bolus IP injection (20% weight of animal) with or without Compound 1. ICP is monitored until the animal expires from the water load.

Adjusting for the slight rise in ICP observed in the animals when they are monitored without the water bolus injection (FIG. 9, No Water Toxicity), Compound 1 at 0.76 mg/kg reduces the relative rate of ICP rise by 36%, from 3.6×10−3 min−1 to 2.3×10−3 min−1 (n=6 mice/treatment, mean±SEM).

+ Open protocol
+ Expand
4

ICP Monitoring and Water Toxicity Amelioration

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 15

ICP is monitored using a Samba 420 Sensor, pressure transducer, with a Samba 202 control unit (Harvard Apparatus, Holliston, Mass.). This ICP monitoring system consists of a 0.42 mm silicon sensor element mounted on an optical fiber. A 20-gauge syringe needle is implanted through the cisterna magna to a depth of ˜1 cm. The needle then acts as a guide for insertion of the Samba Sensor and the site of implantation and the open end of the needle are sealed with 100% silicone sealant. A baseline ICP reading is established followed by a water bolus IP injection (20% weight of animal) with or without Compound 1. ICP is monitored until the animal expires from the water load.

Adjusting for the slight rise in ICP observed in the animals when they are monitored without the water bolus injection (FIG. 8, No Water Toxicity), Compound 1 at 0.76 mg/kg reduces the relative rate of ICP rise by 36%, from 3.6×10−3 min−1 to 2.3×10−3 min−1 (n=6 mice/treatment, mean±SEM).

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!