The largest database of trusted experimental protocols

4 protocols using anti nanog

1

Pluripotency Marker Expression Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Primary antibodies used in this study for immunofluorescence and FACS are as follows: anti-Oct4 (Santa Cruz, C10), anti-Nanog (Cosmobio, RCA B000 2P-F), anti-thy1 (Ebiosciences, 53-2.1), anti-SSEA1 (Stem Cell Technologies, 60060PE) and NL493-conjugated anti-SSEA4 antibody (R&D Systems, SC023), anti-Tra1-60 (Stemgent, 09-0009).
+ Open protocol
+ Expand
2

Immunostaining of Stem Cell Markers

Check if the same lab product or an alternative is used in the 5 most similar protocols
CSCs were plated on D-poly-lysine-coated Lab-Tek chamber slides (coverslips) and allowed to adhere for 3 h. For the staining of differentiated cells, cells were cultured on D-poly-lysine-coated coverslips in DFM for 48 h. Cells were fixed with 4% paraformaldehyde for 20 min at room temperature, incubated in blocking solution (5% normal goat serum (NGS), 1% BSA, 0.1% Triton X-100) and stained overnight with primary antibodies diluted in blocking solution and 2 h with secondary antibodies. Primary antibodies were anti-Nanog (Cosmo Bio Co, Japan), anti-Nestin (AB6142, Abcam) and anti-Gli1 (#2643 Cell Signaling Technology Inc); 488-conjugated anti-mouse and anti-rabbit secondary antibodies were purchased from Molecular Probes (Invitrogen, Eugene, OR). Nuclei were counterstained with Hoechst reagent. Cover slips were mounted with fluorescence mounting medium (S3023, Dako). Images were acquired with Carl Zeiss microscope (Axio Observer Z1) using Apotome technology and AxioVision Digital Image Processing Software.
+ Open protocol
+ Expand
3

Embryonic Chromatin Modification Profiling

Check if the same lab product or an alternative is used in the 5 most similar protocols
Embryos were dissected from the decidua and Reichert’s membrane and treated as previously described (Nichols et al., 2009 (link)). Primary antibodies used are as follows: anti-H3K9me2 (Millipore, CA, 17–648), anti-H3K9me2 (Abcam, UK, ab1220), anti-GFP (Nacalai tesque, Japan, GF090R), anti-G9a (R&D Systems, MN, A8620A), anti-GLP (R&D Systems, MN, PP-B0422-00), anti-cleaved Caspase 3 (Abcam, UK, ab32042), anti-Ki67 (BD Bioscience, NJ, 550609), anti-NANOG (Cosmobio, Japan, REC-RCAB002P-F), anti-AP2γ (Santa Cruz, CA, sc-9877). All imaging was performed using SP5 or SP7 confocal microscope (Leica, Germany).
+ Open protocol
+ Expand
4

Western Blotting and Immunoprecipitation Assay Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cells were lysed using RIPA buffer (Tris-HCl pH 7.6 50 mM, deoxycholic acid sodium salt 0.5%, NaCl 140 mM, NP40 1%, EDTA 5 mM, NaF 100 mM, sodium pyrophosphate 2 mM and protease inhibitors). Lysates were separated on 8% acrylamide gel and immunoblotted using standard procedures. The following antibodies were used: anti-Arrb1 K-16 (sc-8182; Santa Cruz Biotechnology), anti-Nanog (Cosmo Bio Co, Japan), anti-Actin I-19 (sc-1616; Santa Cruz Biotechnology), anti-β-III-Tubulin (MAB 1637 Millipore), anti-Gli1 H-300 (sc-20,687; Santa Cruz Biotechnology), anti-acetyl-Gli1 (Lys518) (Eurogentec) [32 (link)], anti-p300 C-20 (sc-585; Santa Cruz Biotechnology), anti-FLAG M2-Peroxidase (HRP) (A8592 Sigma), anti-HA (sc-7392 Santa Cruz), anti-Gli2 H-300 (sc-28,674; Santa Cruz Biotechnology), anti-Smo N-19 (sc-6366; Santa Cruz Biotechnology), anti-Sox2 (MAB4343 Millipore). HRP-conjugated secondary antibodies (Santa Cruz Biotechnology) were used in combination with enhanced chemo-luminescence (ECL Amersham).
For immunoprecipitation assay antibody sources and concentrations used were: Protein G Plus-Agarose (sc-2002; Santa Cruz Biotechnology); anti-FLAG M2 Affinity Gel (Sigma A2220, IP 30⌠l), anti-FLAG M2-Peroxidase (HRP) (A8592 Sigma, western blotting 1:5000), anti-HA (sc-7392 Santa Cruz, 1:1000); anti-myc-HRP.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!