The largest database of trusted experimental protocols

Vertex v70 ft ir spectrometer

Manufactured by Bruker
Sourced in Germany

The Vertex V70 FT-IR spectrometer is a Fourier transform infrared spectrometer designed for high-performance infrared spectroscopy. It features a high-resolution optical system and a range of accessories to support various analytical applications.

Automatically generated - may contain errors

4 protocols using vertex v70 ft ir spectrometer

1

Multifaceted Characterization of Nanomaterials

Check if the same lab product or an alternative is used in the 5 most similar protocols
Scanning electron microscopy (SEM) images were obtained on a field emission scanning electron microscope (FESEM; NanoSEM 630, NOVA). Transmission electron microscopy (TEM) images were taken with a JEOL-2010 microscope at the accelerating voltage of 200 kV. Powder X-ray diffraction (XRD) patterns were collected on a PANalytical Empyrean X-ray powder diffractometer (Cu Kα radiation, 45 kV, 40 mA) with the detective range from 5 to 80 degrees. Raman spectra were recorded on a WITec Confocal Raman instrument with a 514 nm laser wavelength. The zeta potential of the particles was recorded using a Malvern Zetasizer ZS. Fourier transform infrared spectra were determined on a Bruker Vertex V70 FTIR spectrometer over a potassium bromide pellet and then scanned from 400 to 4000 cm−1 at a resolution of 6 cm−1. Magnetization measurement was carried out with a superconducting quantum interface device (SQUID) magnetometer at 300 K. The UV-Vis adsorption spectral values were performed with a Perkin-Elmer Lambda 950 Spectrophotometer.
+ Open protocol
+ Expand
2

Comprehensive Nanomaterial Characterization

Check if the same lab product or an alternative is used in the 5 most similar protocols
Scanning electron microscopy (SEM) images were obtained on a field-emission scanning electron microscope (NanoSEM 630, NOVA). Transmission electron microscopy (TEM) images were conducted with a Philips-420 microscope at an acceleration voltage of 120 kV. The high angle annular dark field (HAADF) images was obtained by a scanning transmission electron microscopy TITAN (FEI Titan3 G2). The zeta potential was measured by the Malvern Zetasizer ZS. Fourier transform infrared spectra were obtained by a Bruker Vertex V70 FT-IR spectrometer scanned from 400 to 4000 cm−1. The powder X-ray diffraction (PXRD) patterns were performed by a PANalytical Empyrean X-ray powder diffractometer with Cu target (45 kV, 40 mA) from 20 to 70 degrees. The magnetization measurement was collected by a superconducting quantum interface device (SQUID) magnetometer at 300 K.
+ Open protocol
+ Expand
3

Fourier Transform Infrared Spectroscopy

Check if the same lab product or an alternative is used in the 5 most similar protocols
FT-IR was conducted using a Bruker Vertex v70 FT-IR spectrometer equipped with a diamond attenuated total reflectance accessory (Chandran et al., 2010 (link)). The diffuse reflectance technique was in the mid-IR (4000–400 cm−1) spectral region, with a resolution of 4 cm−1. FT-IR was performed in duplicate for each sample.
+ Open protocol
+ Expand
4

Characterization of Electrospun Polymer Composites

Check if the same lab product or an alternative is used in the 5 most similar protocols
Confocal laser scanning microscopy (CLSM) photographs of the PS electrospun material with or without bacteria were obtained with the LSM710 microscope (Zeiss, Jena, Germany) equipped with the argon laser (laser operated at 453 nm for reflected light, and 488 nm for fluorescence mode with the fluorescence observed in the range 510–797 nm).
A scanning electron microscope (SEM) (Hitachi S-3400N, Tokyo, Japan) was applied to observe the surface morphology of the PS/SA/bacteria composite. The average diameter of the PS electrospun fibers was calculated using ImageJ National Institute of Health software (1.53, Bethesda, MD, USA) from 100 points randomly selected from the CLSM images.FT-IR analyses were performed on a Vertex V70 FT-IR spectrometer (Bruker Optik GmbH, Leipzig, Germany) further equipped with a Platinum-ATR-unit (Bruker Optik GmbH, Leipzig, Germany), The material was placed onto the ATR crystal and scanned. To analyze recorded IR spectra the OPUS (7.2, Bruker Optik GmbH, Leipzig, Germany) software was used.
The contact angle was calculated based on measurements made of contact angles of water, LB broth, and milk drops on the surfaces of the materials with the accuracy ±0.01 mN/m using a Drop Shape Analysis System DSA100E (KRÜSS GmbH, Hamburg, Germany).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!