The largest database of trusted experimental protocols

3 protocols using bovine pituitary extract

1

Cell Culture Protocols for Cancer Research

Check if the same lab product or an alternative is used in the 5 most similar protocols
U2OS cells (American Type Culture Collection, ATCC) were maintained in McCoy’s 5A medium supplemented with 10% fetal bovine serum. MCF-10A cells (ATCC) were cultured in mammary epithelial growth medium containing insulin, hydrocortisone, epidermal growth factor, and bovine pituitary extract (Clonetics). EVSAT cells (Creative Bioarray, NY, USA) were cultured in MEM containing 10% fetal bovine serum. MDA-MB-436 cells (ATCC) were maintained in DMEM medium supplemented with 10% fetal bovine serum. PC3, DU145, ACHN, 786-0, H226, H522, OVCAR-3, OVCAR-8, and MCF7 cells were all obtained from ATCC and maintained according to ATCC instructions. BRCA1 (D-9) monoclonal and TTK polyclonal antibodies were purchased from Santa Cruz (SC-6954, 1:1000) and Cell Signaling (#3255, 1:1000), respectively. ZNF668 antibodies were generated as previously described41 (link). Uncropped scans of the most important western blots are listed as supplementary figures in Supplementary Figure 13. PI3K inhibitor LY-294002 and mTOR inhibitor rapamycin were purchased from Sigma. PARP inhibitors olaparib and rucaparib, HDAC inhibitor vorinostat and Hsp90 inhibitor AUY922 were from Selleckchem. TTK inhibitor AZ3146 was purchased from R&D Systems.
+ Open protocol
+ Expand
2

Cell Culture Protocols for Cancer Research

Check if the same lab product or an alternative is used in the 5 most similar protocols
U2OS cells (American Type Culture Collection, ATCC) were maintained in McCoy’s 5A medium supplemented with 10% fetal bovine serum. MCF-10A cells (ATCC) were cultured in mammary epithelial growth medium containing insulin, hydrocortisone, epidermal growth factor, and bovine pituitary extract (Clonetics). EVSAT cells (Creative Bioarray, NY, USA) were cultured in MEM containing 10% fetal bovine serum. MDA-MB-436 cells (ATCC) were maintained in DMEM medium supplemented with 10% fetal bovine serum. PC3, DU145, ACHN, 786-0, H226, H522, OVCAR-3, OVCAR-8, and MCF7 cells were all obtained from ATCC and maintained according to ATCC instructions. BRCA1 (D-9) monoclonal and TTK polyclonal antibodies were purchased from Santa Cruz (SC-6954, 1:1000) and Cell Signaling (#3255, 1:1000), respectively. ZNF668 antibodies were generated as previously described41 (link). Uncropped scans of the most important western blots are listed as supplementary figures in Supplementary Figure 13. PI3K inhibitor LY-294002 and mTOR inhibitor rapamycin were purchased from Sigma. PARP inhibitors olaparib and rucaparib, HDAC inhibitor vorinostat and Hsp90 inhibitor AUY922 were from Selleckchem. TTK inhibitor AZ3146 was purchased from R&D Systems.
+ Open protocol
+ Expand
3

Culturing of Normal Human Keratinocytes

Check if the same lab product or an alternative is used in the 5 most similar protocols
Normal human epidermal keratinocytes (NHEKs) were purchased from Clonetics (CC-2501) and Promocell. We used cells from 3 different donors of different race and age (referred as 4F0315, 2F1958, and K1MC). Cells were obtained anonymously and informed consent of each skin donor was obtained by the supplier. Cells were grown at 37°C in an atmosphere of 5% CO2 in a KGM-2 BulletKit medium consisting of modified MCBD153 with 0,15 mmol/L calcium, supplemented with bovine pituitary extract, epidermal growth factor, insulin, hydrocortisone, transferrin, and epinephrin (Clonetics). Such a serum-free low-calcium medium was shown to minimize keratinocyte terminal differentiation [29 (link)]. In all experiments, cells were seeded at 3500 cells/cm2 and always splitted at 70% confluence. The number of population doublings (PD) was calculated at each passage by means of the following equation: PD = log (number of collected cells/number of plated cells)/log2. Ursodeoxycholic acid and 3-(4-(Trifluoromethyl) phenylamino) benzoic acid were obtained from Sigma and Calbiochem, and diluted in ethanol and DMSO respectively.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!