The largest database of trusted experimental protocols

Nanoscope 5 atomic force microscope

Manufactured by Bruker
Sourced in Germany

The Nanoscope V Atomic Force Microscope is a high-resolution imaging instrument that uses a sharp tip to scan the surface of a sample. It measures the small forces between the tip and the sample, generating a detailed topographic map of the surface at the nanometer scale.

Automatically generated - may contain errors

5 protocols using nanoscope 5 atomic force microscope

1

Atomic Force Microscopy of Bacterial Samples

Check if the same lab product or an alternative is used in the 5 most similar protocols
For AFM, bacterial cells or OMV preparations were diluted with ultrapure water (Millipore) and placed onto a freshly cleaved mica surface. Samples were incubated for 5 min at room temperature, washed with ultrapure water, and then placed in a desiccator for ~2 h in order to dry. The samples were finally magnified through a Nanoscope V Atomic Force Microscope (Bruker AXS GmbH, Karlsruhe, Germany), using tapping mode. Final images were plane fitted in both the x and y axes and are presented in amplitude mode.
+ Open protocol
+ Expand
2

Atomic Force Microscopy of S. aureus

Check if the same lab product or an alternative is used in the 5 most similar protocols
Atomic force microscopy (AFM) analysis of S. aureus MSSA476 cultivated on Luria-Bertani (LB) agar (LA), brain-heart infusion (BHI) agar, and blood agar were carried out as described previously (Thay et al., 2013 (link)). Briefly, bacterial cells were suspended in ultrapure water and placed on a freshly cleaved mica surface. The samples were incubated for approximately 5 min at room temperature and blotted dry before being placed into a desiccator. Representative images were collected by a Nanoscope V Atomic Force Microscope (Bruker AXS, Germany).
+ Open protocol
+ Expand
3

Bacterial Cell Topography via AFM

Check if the same lab product or an alternative is used in the 5 most similar protocols
For AFM, bacterial cells were diluted with ultrapure water (Millipore) and placed onto a freshly cleaved mica surface. Samples were incubated for 5 min at room temperature, washed with ultrapure water, and then placed in a desiccator for ~2 h in order to dry. The samples were finally magnified through a Nanoscope V Atomic Force Microscope (Bruker AXS GmbH, Karlsruhe, Germany), using tapping mode. Final images were plane fitted in both the x- and y-axes and are presented in amplitude mode.
+ Open protocol
+ Expand
4

AFM Imaging of Outer Membrane Vesicles

Check if the same lab product or an alternative is used in the 5 most similar protocols
For AFM, samples of OMVs were diluted with ultrapure water (Millipore) and placed onto a freshly cleaved mica surface. Samples were incubated for 5 min at room temperature, washed with ultrapure water, and then placed in a desiccator for ~2 h in order to dry. The samples were finally magnified through a Nanoscope V Atomic Force Microscope (Bruker AXS GmbH, Karlsruhe, Germany), using tapping mode. Final images were plane fitted in both the x and y axes and are presented in amplitude mode.
+ Open protocol
+ Expand
5

Bacterial Cell Surface Imaging by AFM

Check if the same lab product or an alternative is used in the 5 most similar protocols
Washed and concentrated bacterial cultures were placed on a freshly cleaved ruby red mica (Goodfellow Cambridge Ltd, Cambridge), incubated for 5 min at room temperature and blotted dry before placement in a dessicator for at least 2 h. Images were collected within a Nanoscope V atomic force microscope (Bruker software) using ScanAsyst in air with ScanAsyst cantilevers, at a scanrate of ~0.9–1 Hz. The final images were flattened and/or planefitted in both axes using Bruker software and presented in amplitude (error) mode.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!