The largest database of trusted experimental protocols

Liquid acetic acid

Manufactured by Avantor
Sourced in Germany

Liquid acetic acid is a clear, colorless liquid chemical compound. It has a distinctive pungent odor and is miscible with water, alcohol, and other organic solvents. The core function of liquid acetic acid is as a chemical reagent and industrial precursor.

Automatically generated - may contain errors

3 protocols using liquid acetic acid

1

Acrylic Acid Synthesis from Lactide and Tetrabutylphosphonium Bromide

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 55

34.62 g of solid tetrabutylphosphonium bromide ([PBu4]Br, 100 mmol, 98%; Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany; catalog #189138) and 3.6 g of solid lactide (25 mmol, L,L lactide, polymer grade, Corbion Purac Co., Lenexa, Kans.) were first mixed at room temperature and atmospheric conditions in a 100 mL three-necked glass reactor. 0.3 g of liquid acetic acid (5 mmol, 100%; VWR International GmbH, Darmstadt, Germany; catalog #20104.334) was then added to the reaction mixture, thus generating a molar ratio of lactic acid equivalent (LAe) to [PBu4]Br to acetic acid equal to 1:2:0.1. The reaction mixture was then heated to a reaction temperature of 150° C. under continuous stirring with an overhead stirrer at a speed of 300 rpm. After the reaction mixture reached a constant temperature of 150° C., the system was batchwise refluxed and gaseous by-products were routed to the off-gas or collected in a hydrostatic column. After a reaction time of 168 h, the hot molten salt was allowed to cool down to room temperature and was analyzed via off-line 1H NMR (JEOL ECX 400 MHz). 1H qNMR analysis of the reaction mixture gave an acrylic acid yield (AAY) of about 30 mol %.

+ Open protocol
+ Expand
2

Synthesis of Acrylic Acid from Lactide and Tetrabutylphosphonium Bromide

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 55

34.62 g of solid tetrabutylphosphonium bromide ([PBu4]Br; 100 mmol, 98%; Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany; catalog #189138) and 3.6 g of solid lactide (25 mmol, L,L lactide, polymer grade, Corbion Purac Co., Lenexa, Kans.) were first mixed at room temperature and atmospheric conditions in a 100 mL three-necked glass reactor. 0.3 g of liquid acetic acid (5 mmol, 100%; VWR International GmbH, Darmstadt, Germany; catalog #20104.334) was then added to the reaction mixture, thus generating a molar ratio of lactic acid equivalent (LAe) to [PBu4]Br to acetic acid equal to 1:2:0.1. The reaction mixture was then heated to a reaction temperature of 150° C. under continuous stirring with an overhead stirrer at a speed of 300 rpm. After the reaction mixture reached a constant temperature of 150° C., the system was batchwise refluxed and gaseous by-products were routed to the off-gas or collected in a hydrostatic column. After a reaction time of 168 h, the hot molten salt was allowed to cool down to room temperature and was analyzed via off-line 1H NMR (JEOL ECX 400 MHz). 1H qNMR analysis of the reaction mixture gave an acrylic acid yield (AAY) of about 30 mol %.

+ Open protocol
+ Expand
3

Synthesis of Acrylic Acid from Lactide and Tetrabutylphosphonium Bromide

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 55

34.62 g of solid tetrabutylphosphonium bromide ([PBu4]Br; 100 mmol, 98%; Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany; catalog #189138) and 3.6 g of solid lactide (25 mmol, L,L lactide, polymer grade, Corbion Purac Co., Lenexa, Kans.) were first mixed at room temperature and atmospheric conditions in a 100 mL three-necked glass reactor. 0.3 g of liquid acetic acid (5 mmol, 100%; VWR International GmbH, Darmstadt, Germany; catalog #20104.334) was then added to the reaction mixture, thus generating a molar ratio of lactic acid equivalent (LAe) to [PBu4]Br to acetic acid equal to 1:2:0.1. The reaction mixture was then heated to a reaction temperature of 150° C. under continuous stirring with an overhead stirrer at a speed of 300 rpm. After the reaction mixture reached a constant temperature of 150° C., the system was batchwise refluxed and gaseous by-products were routed to the off-gas or collected in a hydrostatic column. After a reaction time of 168 h, the hot molten salt was allowed to cool down to room temperature and was analyzed via off-line 1H NMR (JEOL ECX 400 MHz). 1H qNMR analysis of the reaction mixture gave an acrylic acid yield (AAY) of about 30 mol %.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!