The largest database of trusted experimental protocols

Magna pure dna tissue lysis buffer

Manufactured by Roche
Sourced in Germany

The MagNA Pure DNA Tissue Lysis Buffer is a reagent used in the DNA extraction process. It is designed to lyse cells and release the DNA content. The buffer is a component of the MagNA Pure system, a fully automated nucleic acid purification platform.

Automatically generated - may contain errors

4 protocols using magna pure dna tissue lysis buffer

1

Automated Nucleic Acid Extraction Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
Pure cultures of each strain were incubated in 750 μL lysis buffer (MagNA Pure DNA Tissue Lysis Buffer, Roche, Mannheim, Germany) and 75 μL proteinase K (proteinase K, lyophilisiert, ≥30 U/mg, Carl Roth GmbH & Co KG, Karlsruhe, Germany) for one hour at 65 °C. From this, 200 μL were utilized for automated nucleic acid (NA) extraction using the MagNA Pure 96 DNA and Viral NA Small Volume Kit (Roche, Mannheim, Germany) according to the manufacturer’s instructions. The resulting NAs were eluted in a volume of 100 μL. The isolated NAs were kept at −18 °C until the PCR tests were performed. The DNA used for the dilution series was extracted manually using the QIAamp® DNA MicroKit (50) (Qiagen, Hilden, Germany), and the DNA concentration was measured with a spectrophotometer (NanoDrop 2000, Thermo Fisher Scientific, Inc., Wilmington, NC, USA).
+ Open protocol
+ Expand
2

Bacterial DNA Extraction and Sequencing

Check if the same lab product or an alternative is used in the 5 most similar protocols
All culture plates except MAC (regardless of visible bacterial growth) were washed with 3 mL sterile PBS and bacterial colonies were released by gently scraping agar surface with a sterile cell scraper. Bacteria from 1 mL of the resulting suspension were collected by centrifugation, resuspended in 0.2 mL MagNA Pure DNA Tissue Lysis Buffer (Roche) and stored at −80 °C until extraction. DNA was extracted from patient samples and plate washes using the QIAamp UCP Pathogen Mini Kit (Qiagen) with mechanical disruption of samples with 1.4-mm ceramic beads followed by enzymatic lysis via proteinase K. Next generation sequencing libraries were prepared and DNA sequencing was performed as previously described14 (link). Briefly, the 16S v1–v2 region was amplified using custom primers incorporating Illumina-compatible sequencing adaptors and a sample-specific 8-bp barcode sequence; paired-end sequencing was performed on an Illumina Miseq using a 500-cycle sequencing kit (version 2) to a minimum read depth of 50,000 reads per sample. Sequence data generated for this study have been submitted to the NCBI Sequence Read Archive (SRA) under accession no. PRJNA555084.
+ Open protocol
+ Expand
3

Canine Respiratory Pathogen Diagnostic Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
Nasopharyngeal swabs (all dogs) and rectal swabs (sick dogs only) were collected and analyzed by Laboklin GmbH & Co. (Bad Kissingen, Germany) using conventional PCR or real-time PCR (qPCR and RT-qPCR). Swabs were incubated in 750 µL MagNA Pure DNA Tissue Lysis Buffer (Roche Diagnostics GmbH, DE-Mannheim, Germany) plus 75 µL Proteinase K (Carl Roth GmbH + Co. KG, DE-Karlsruhe, Germany) for 1 h at 65 °C. Automated isolation of nucleic acids (RNA and DNA) was performed with the MagNA Pure 96 system from Roche Diagnostics GmbH according to manufacturer's instructions. Nasopharyngeal swabs from sick dogs were tested for canine adenovirus type 2 (CAV-2) [16 (link)], Bordetella bronchiseptica [17 (link)], CDV [18 (link)], canine parainfluenza virus (CPIV) (in-house method), canine influenza A virus (CIV) [19 (link)] and canine herpesvirus-1 (Canid alphaherpesvirus-1: CaHV-1) [20 (link)] by Taqman real-time PCR on a LightCycler®96 (Roche Diagnostics, Basel, Switzerland) and for Mycoplasma spp. [21 (link)] by conventional PCR. Swabs from all sick dogs, and swabs from healthy dogs that presented α-SARS-CoV-2 IgG, were also tested for SARS-CoV-2 [22 ] by Taqman real-time PCR on a LightCycler®96 (Roche Diagnostics).
+ Open protocol
+ Expand
4

Automated RNA Isolation from Tissue

Check if the same lab product or an alternative is used in the 5 most similar protocols
After harvesting, tissue pieces were immediately submerged in RNAlater (Thermo Fisher, US) and stored at −20 °C. Prior to RNA purification, tissue samples were homogenized using the MagNA Lyser instrument and the MagNA Lyser Green Beads tubes, together with 100–400 μL MagNA Pure DNA tissue lysis buffer (Roche Diagnostics, Germany). After transferring the samples to the MagNA Pure Compact System, automated isolation of total RNA was performed using the MagNA Pure Compact RNA isolation kit (Roche Diagnostics, Germany). The yield and purity of the isolated RNA were calculated by measuring the absorbance at 260 nm and 280 nm with a Nanodrop spectrometer. RNA integrity checks were performed using an Agilent BioAnalyzer 2100 (Agilent, US).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!