The largest database of trusted experimental protocols

Flexan 2

Manufactured by AkzoNobel
Sourced in United States

FLEXAN II is a laboratory equipment product manufactured by AkzoNobel. It is designed to provide flexible and precise control over the testing and analysis of materials. The core function of FLEXAN II is to enable the measurement and evaluation of various physical and mechanical properties of samples in a controlled environment.

Automatically generated - may contain errors

5 protocols using flexan 2

1

Fragrance Emulsion and Capsule Formation

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 49

Preparation of the Fragrance Emulsion.

Ninety-six grams of a fragrance, Greenfields (International Flavors and Fragrance, Union Beach, N.J.) was weighed out and combined with 24 g of NEOBEE oil (Stepan, Chicago, Ill.) and 14.4 g of isocyanate monomer, Desmodur® N100 (Bayer corporation, Pittsburgh, Pa., USA), to form the oil phase. In a separate beaker, an aqueous solution (115.2 g) containing 1.3% of FLEXAN II (Akzo Nobel, Bridgewater, N.J.) was mixed with a solution (30 g) of 1% CMC in Water to form the aqueous phase. The oil phase was then emulsified into the aqueous phase to form the fragrance emulsion under shearing (ULTRA TURRAX, T25 Basic, IKA WERKE) at 12500 rpm for two minutes.

Formation of Fragrance Capsules.

The fragrance emulsion was heated to 35° C. in a round bottom vessel before drop-wise addition of arginine monohydrochloride (20 g, 48%) and DABCO (0.4 g) under constant mixing with an overhead mixer. Formation of capsules was immediately visible by optical microscopy. The mixer speed was reduced after the addition of arginine monohydrochloride was complete. The temperature was raised 55° C. and then kept at 55° C. for 2 hours.

+ Open protocol
+ Expand
2

Encapsulation of Fragrance Emulsion

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 23

Preparation of the Fragrance Emulsion.

Ninety-six grams of a fragrance, Greenfields (International Flavors and Fragrance, Union Beach, N.J.) was weighed out and combined with 24 g of Neobee oil M-5 (caprylic/capric triglyceride, Stepan, Chicago, Ill., USA) and 9.6 g of isocyanate monomer, and Takenate D110-N (trimethylol propane-adduct of xylylene diisocyanate, Mitsui Chemicals corporation, Rye Brook, N.Y., USA) to form the oil phase. In a separate beaker, a 1% surfactant solution (160 g) was prepared by dissolving sufficient amount of Flexan II (polystyrene sulfonate, Akzo Nobel, Bridgewater, N.J., USA) and CMC (carboxymethyl cellulose, WALOCEL CRT 50000 PA 07, Dow, Midland, Mich.) in water. The oil phase was then emulsified into the aqueous phase to form the fragrance emulsion under shearing (Ultra Turrax®, T25 Basic, and IKA® WERKE) at 6500 rpm for two minutes.

Formation of Fragrance Capsules.

The fragrance emulsion prepared in step 1 was heated to 35° C. in a round bottom vessel and to which 10.4 g of 49% branched polyethylenimine (Sigma-Aldrich, St. Louis, Mo.) was added under constant mixing with an overhead mixer. Formation of capsule was immediately visible by optical microscopy. The mixer speed was reduced after the addition of crosslinker was complete. The temperature was raised 75° C. and kept at 75° C. for 2 hours.

+ Open protocol
+ Expand
3

Fragrance Emulsion and Capsule Formation

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 50

Preparation of the Fragrance Emulsion.

Ninety-six grams of a fragrance, Greenfields (International Flavors and Fragrance, Union Beach, N.J.) was weighed out and combined with 24 g of NEOBEE oil (Stepan, Chicago, Ill.) and 19.2 g of isocyanate monomer, Desmodur® N100 (Bayer corporation, Pittsburgh, Pa., USA), to form the oil phase. In a separate beaker, an aqueous solution (115.2 g) containing 1.36% of FLEXAN II (Akzo Nobel, Bridgewater, N.J.) was mixed with a solution (30 g) of 1% CMC in Water to form the aqueous phase. The oil phase was then emulsified into the aqueous phase to form the fragrance emulsion under shearing (ULTRA TURRAX, T25 Basic, IKA WERKE) at 12500 rpm for two minutes.

Formation of Fragrance Capsules.

The fragrance emulsion was heated to 35° C. in a round bottom vessel before drop-wise addition of arginine monohydrochloride (19.8 g, 64%) and DABCO (0.6 g) under constant mixing with an overhead mixer. Formation of capsules was immediately visible by optical microscopy. The mixer speed was reduced after the addition of arginine monohydrochloride was complete. The temperature was raised 55° C. and then kept at 55° C. for 2 hours.

+ Open protocol
+ Expand
4

Fragrance Emulsion Capsule Preparation

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 22

Preparation of the Fragrance Emulsion.

Ninety-six grams of a fragrance, Greenfields (International Flavors and Fragrance, Union Beach, N.J.) was weighed out and combined with 24 g of NEOBEE oil M-5 (caprylic/capric triglyceride, Stepan, Chicago, Ill.) and 9.6 g of isocyanate monomer, TAKENATE D110-N (trimethylol propane-adduct of xylylene diisocyanate, Mitsui Chemicals Corporation, Rye Brook, N.Y.), to form the oil phase. In a separate beaker, a solution (130 g) containing 1% of FLEXAN II (polystyrene sulfonate, Akzo Nobel, Bridgewater, N.J.) was mixed with a solution (30 g) of 1% CMC (WALOCEL CRT 50000 PA 07, Dow, Midland, Mich.) in water to form the aqueous phase. The oil phase was then emulsified into the aqueous phase to form the fragrance emulsion under shearing (ULTRA TURRAX, T25 Basic, IKA WERKE) at 6500 rpm for two minutes.

Formation of Fragrance Capsules.

The fragrance emulsion was heated to 35° C. in a round bottom vessel and 10.4 g of 49% Lupasol P (multifunctional cationic polyehtylenimine; MW 750,000 Da; BASF, Tarrytown, N.Y., USA) was added under constant mixing with an overhead mixer. Formation of capsules was immediately visible by optical microscopy. The mixer speed was reduced after the addition of crosslinker was complete. The capsule slurry was cured at 55° C. for two hours.

+ Open protocol
+ Expand
5

Fragrance Emulsion and Capsule Formation

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 48

Preparation of the Fragrance Emulsion.

Ninety-six grams of a fragrance, Greenfields (International Flavors and Fragrance, Union Beach, N.J.) was weighed out and combined with 24 g of NEOBEE oil (Stepan, Chicago, Ill.) and 9.6 g of isocyanate monomer, Desmodur® N100 (Bayer corporation, Pittsburgh, Pa., USA), to form the oil phase. In a separate beaker, an aqueous solution (120 g) containing 1.25% of FLEXAN II (Akzo Nobel, Bridgewater, N.J.) was mixed with a solution (30 g) of 1% CMC in Water to form the aqueous phase. The oil phase was then emulsified into the aqueous phase to form the fragrance emulsion under shearing (ULTRA TURRAX, T25 Basic, IKA WERKE) at 12500 rpm for two minutes.

Formation of Fragrance Capsules.

The fragrance emulsion was heated to 35° C. in a round bottom vessel before drop-wise addition of arginine monohydrochloride (20.1 g, 32%) and DABCO (0.3 g) under constant mixing with an overhead mixer. Formation of capsules was immediately visible by optical microscopy. The mixer speed was reduced after the addition of arginine monohydrochloride was complete. The temperature was raised 75° C. and then kept at 75° C. for 2 hours.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!