All materials were polymerized according to the manufacturers’ instructions into silicon rings (height 2 mm; internal diameter 6 mm; external diameter 8 mm) to obtain specimens identical in size. Cavities of these rings were slightly overfilled with material, covered with a transparent polyester film strip (Mylar strip, Henry Schein, Melville, NY, USA), pressed between glass plates and polymerized for 40 s on each side using a curing unit (Celalux II, Voco, Cuxhaven, Germany). One light polymerization mode was used for each material—standard: 1000 mW·cm−2 for 40 s. The intensity of the light was verified with a radiometer (SDS Kerr, Orange, CA, USA). The light was placed perpendicular to the specimen surface, at a distance of 1.5 mm. A total of forty specimens of each composite resin were prepared.
Mylar strip
The Mylar strip is a type of laboratory equipment commonly used in various scientific applications. It is a thin, flexible, and durable film made of polyethylene terephthalate (PET). The primary function of the Mylar strip is to provide a protective or insulating layer for sensitive materials or equipment.
7 protocols using mylar strip
Comparative Evaluation of Dental Composites
All materials were polymerized according to the manufacturers’ instructions into silicon rings (height 2 mm; internal diameter 6 mm; external diameter 8 mm) to obtain specimens identical in size. Cavities of these rings were slightly overfilled with material, covered with a transparent polyester film strip (Mylar strip, Henry Schein, Melville, NY, USA), pressed between glass plates and polymerized for 40 s on each side using a curing unit (Celalux II, Voco, Cuxhaven, Germany). One light polymerization mode was used for each material—standard: 1000 mW·cm−2 for 40 s. The intensity of the light was verified with a radiometer (SDS Kerr, Orange, CA, USA). The light was placed perpendicular to the specimen surface, at a distance of 1.5 mm. A total of forty specimens of each composite resin were prepared.
Fabrication of Gradia Direct Composite Rings
Standardized Composite Disc Preparation
All specimens were stored in distilled water for 24 hours in complete darkness at 37° C.
The two control groups obtained were:
- Group GD control: Including specimens assembled with Gradia Direct
- Group GN control: Including specimens assembled with G-aenial.
Standardized Composite Disc Preparation
Fabrication and Characterization of Dental Composite Specimens
Evaluation of Fissure Sealant Performance
The fissure sealants were applied to the demarcated enamel area using silicon rings (height 2 mm; internal diameter 6 mm; external diameter 8 mm) to obtain specimens identical in size. The cavity of these rings were slightly overfilled with each sealant, covered with a Mylar strip (Henry Schein, Melville, NY, USA), and pressed against a glass plate. All specimens were then light-cured using a LED curing light in soft start-polymerization mode (Celalux 2 High-Power LED curing-light, Voco GmbH, Cuxhaven, Germany) for the times suggested by the manufacturers at an irradiance of 1000 mW/cm2. The light was perpendicular to the specimen surface at a distance of 1.5 mm. Following polymerization, specimens were stored in distilled water for 24 h at 37 °C. For each of the four groups described ahead we obtained 20 specimens for each fissure sealant.
Standardized Aesthetic Material Testing
Esthetic restorative materials tested in this study are presented in
All materials were polymerized according to the manufacturers' instructions into silicon rings (height 2 mm; internal diameter 6 mm; and external diameter 8 mm) to obtain specimens identical in size. Cavities of these rings were slightly overfilled with material, covered with transparent polyester film strip (Mylar strip, Henry Schein, Melville, NY, USA), pressed between glass plates, and polymerized for 40 s on each side using a curing unit (Celalux II, Voco, Cuxhaven, Germany). One light polymerization mode was used for each material - standard: 1000 mW/cm2 for 40 s. The intensity of the light was verified with a radiometer (SDS Kerr, Orange, CA, USA). The light was placed perpendicular to the specimen surface at a distance of 1.5 mm to have the best intensity of light in accordance to the manufacturers' instructions.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!