The largest database of trusted experimental protocols

Agilent lc msd trap xct plus system

Manufactured by Agilent Technologies

The Agilent LC/MSD Trap XCT Plus system is a liquid chromatography-mass spectrometry (LC/MS) instrument designed for high-performance analysis. It combines liquid chromatography with an ion trap mass spectrometer to provide sensitive and accurate quantitative and qualitative analysis of a wide range of compounds.

Automatically generated - may contain errors

4 protocols using agilent lc msd trap xct plus system

1

Characterization of Organic Compounds

Check if the same lab product or an alternative is used in the 5 most similar protocols
All chemicals were reagent grade. 1H NMR and 13C NMR spectra were obtained on Varian (Palo Alto, CA) Unity spectrometers at 400 and 500 MHz for 1H and at 100 and 125 MHz for 13C. Elemental analyses were carried out in the University of Illinois Microanalysis Laboratory. HPLC/MS analyses were performed by using an Agilent LC/MSD Trap XCT Plus system (Agilent Technologies, Santa Clara, CA) with an 1100 series HPLC system including a degasser, an autosampler, a binary pump, and a multiple wavelength detector. All final compounds were ≥95% pure as determined by quantitative spin count NMR (qNMR) or HPLC-MS and structures were characterized by 1H NMR and HRMS.
+ Open protocol
+ Expand
2

Synthesis and Characterization of Novel Compounds

Check if the same lab product or an alternative is used in the 5 most similar protocols
All chemicals were reagent grade. 1H NMR and 13C NMR spectra were obtained on Varian (Palo Alto, CA) Unity spectrometers at 400 and 500 MHz for 1H and at 100 and 125 MHz for 13C. Elemental analyses were carried out in the University of Illinois Microanalysis Laboratory. HPLC/MS analyses were performed by using an Agilent LC/MSD Trap XCT Plus system (Agilent Technologies, Santa Clara, CA) with an 1100 series HPLC system including a degasser, an autosampler, a binary pump, and a multiple wavelength detector. All final compounds were ≥90% pure as determined by quantitative spin count NMR (qNMR) and structures were characterized by 1H NMR and HRMS. The synthesis and characterization of all new compounds (3-50) are shown in the Supporting Information.
+ Open protocol
+ Expand
3

Characterization of Pentamidine and Netropsin

Check if the same lab product or an alternative is used in the 5 most similar protocols
All chemicals were reagent grade. Pentamidine and netropsin were purchased from Aldrich. 1H NMR and 13C NMR spectra were obtained on Varian (Palo Alto, CA) Unity spectrometers at 400 and 500 MHz for 1H and at 100 and 125 MHz for 13C. Elemental analyses were carried out in the University of Illinois Microanalysis Laboratory. HPLC/MS analyses were performed by using an Agilent LC/MSD Trap XCT Plus system (Agilent Technologies, Santa Clara, CA) with an 1100 series HPLC system including a degasser, an autosampler, a binary pump, and a multiple wavelength detector. All final compounds were ≥95% pure as determined by elemental analysis or analytical HPLC/MS analysis and were also characterized by 1H NMR and HRMS.
+ Open protocol
+ Expand
4

Synthesis and Characterization of Benzoic Acids

Check if the same lab product or an alternative is used in the 5 most similar protocols
All chemicals were reagent grade. 1H and 13C NMR spectra were obtained on Varian (Palo Alto, CA) Unity spectrometers at 400 or 500 MHz for 1H and at 100 or 125 MHz for 13C. Elemental analyses were carried out in the University of Illinois Microanalysis Laboratory. HPLC-MS analyses were performed by using an Agilent LC/MSD Trap XCT Plus system (Agilent Technologies, Santa Clara, CA) with an 1100 series HPLC system including a degasser, an autosampler, a binary pump, and a multiple wavelength detector. All final compounds were ≥95% pure as determined by HPLC and structures were characterized by 1H NMR, LC-MS and HRMS. More detailed information on the synthesis of benzoic acids can be found in the Supporting Information.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!