Serial sections were obtained from FFPE blocks of human RCC tumor and its normal counterparts. The sections were individually stained with anti-CAII and anti-CD31 antibodies. Immunoreactivity was visualized with HRP-linked secondary antibody (Dako) and counterstained with hematoxylin (Wako). For vessel maturity analysis, determined by the microvessel pericyte coverage index (MPI), mouse tumor FFPE sections were systematically co-stained with both anti-CD31 and anti-α-SMA antibodies in the same tissue. The anti-glut1 antibody was used to identify hypoxic tumor areas. Images were captured using a NanoZoomer 2.0-HT Slide Scanner (NanoZoomer 2.0 HT, version 2.3.27, Hamamatsu, Japan) and observed with the NanoZoomer Digital Pathology software. The antibodies used are listed in Additional file
Fluoview ver 4.2b software
The Fluoview ver. 4.2b software is a platform for imaging and analysis of fluorescently labeled samples. It provides tools for image acquisition, processing, and analysis of confocal microscopy data.
Lab products found in correlation
3 protocols using fluoview ver 4.2b software
Immunostaining for Tumor Vasculature Characterization
Serial sections were obtained from FFPE blocks of human RCC tumor and its normal counterparts. The sections were individually stained with anti-CAII and anti-CD31 antibodies. Immunoreactivity was visualized with HRP-linked secondary antibody (Dako) and counterstained with hematoxylin (Wako). For vessel maturity analysis, determined by the microvessel pericyte coverage index (MPI), mouse tumor FFPE sections were systematically co-stained with both anti-CD31 and anti-α-SMA antibodies in the same tissue. The anti-glut1 antibody was used to identify hypoxic tumor areas. Images were captured using a NanoZoomer 2.0-HT Slide Scanner (NanoZoomer 2.0 HT, version 2.3.27, Hamamatsu, Japan) and observed with the NanoZoomer Digital Pathology software. The antibodies used are listed in Additional file
Quantifying Intracellular PpIX Levels
Quantifying Intracellular PpIX Levels
Laser illumination was set at 3.0% power for PpIX and 5.0% power for DRAQ5. All images were acquired using a ×60 oil immersion lens. The images were analyzed using Olympus Fluoview ver. 4.2b software. A Cytation 5 microplate reader (BioTek, Winooski, VT, USA) was used for the live-cell relative quanti cation of intracellular PpIX content. The excitation wavelength was set at 385-425 nm for PpIX and 330-370 nm for Hoechst 33342 (Thermo Fisher Scienti c). The emission wavelength was set at 615-655 nm for PpIX and 430-470 nm for Hoechst 33342. Fluorescence was measured at 10 points in each well.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!