The largest database of trusted experimental protocols

Lightcycler 480 2.0 real time pcr system

Manufactured by Roche

The LightCycler®480 2.0 Real-time PCR System is a laboratory instrument designed for quantitative real-time PCR analysis. It features a multi-well plate format and high-performance optical detection system to enable efficient and accurate nucleic acid quantification.

Automatically generated - may contain errors

3 protocols using lightcycler 480 2.0 real time pcr system

1

RNA extraction and qPCR analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Total RNA from MEFs was isolated using TRIzol Reagent (Life Technologies) according to the manufacturer’s instructions. Contaminant genomic DNA was eliminated with TURBO DNA-free kit (Ambion). Reverse transcription was carried out using 1 μg DNA-free RNA and 50 μM random hexamers, 20 U of RNase Out and 100 U of RevertAid reverse transcriptase (Life Technologies). Complementary DNA reactions were used as templates for PCR reactions. Real-time PCR was performed using the light cycler-DNA MasterPLUS SYBR Green I mix (Thermo Scientific) supplemented with 0.5 μM of specific primer pairs (listed in Supplementary Table 2). Real-time qPCRs were run on a light cycler rapid thermal system (Light Cycler 480 2.0 Real time PCR system, Roche) with 20 s of denaturation at 95 °C, 20 s of annealing at 60 °C and 20 s of extension at 72 °C for all primers, and analysed by the comparative CT (▵Ct) method.
+ Open protocol
+ Expand
2

Quantifying DNA Methylation Levels

Check if the same lab product or an alternative is used in the 5 most similar protocols
Genomic DNA (200 ng) was digested at 37°C for 4 h with 10 U of the methylation-sensitive enzyme AciI, or NcoI (New England Biolabs) which does not have cutting sites in our regions of interest and served to normalize the data. The endonucleases were subsequently inactivated by incubation at 65°C for 20 min. Real-time PCR was carried out using the light cycler-DNA MasterPLUS SYBR Green I mix (Roche) supplemented with 0.5 μM specific primer pairs and with 2 μL of digested DNA. Real-time quantification PCR were run on a light cycler rapid thermal system (LightCycler®480 2.0 Real time PCR system, Roche) with 20 sec of denaturation at 95°C, 20 sec of annealing at 65°C and 20 sec of extension at 72°C for all primers, and analyzed by the comparative CT (∆CT) method according to the formula: methylation (%) = E(∆CT) × 100 where E represents PCR efficiency and ∆CT = CTsample (AciI digest) - CTsample (NcoI digest). Sequences of primers within CpG islands at germline gene promoters are shown in Additional file
1. Each data shown on histograms is the mean result of qPCR analysis on at least three independent experiments performed on at least three independent genomic extractions.
+ Open protocol
+ Expand
3

RNA Isolation and Quantitative PCR Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Total RNA from MEFs was isolated using TRIzol® Reagent (Life Technologies) according to manufacturer's instructions. Contaminant genomic DNA was eliminated with TURBO DNA-free kit (Ambion). Reverse transcription was carried out using 1 μg DNA-free RNA and 50 μM random hexamers, 20U of RNase Out and 100U of RevertAid reverse transcriptase (Life Technologies). Complementary DNA reactions were used as templates for PCR reactions. Real-time PCR was performed using the light cycler-DNA MasterPLUS SYBR Green I mix (Thermo Scientific) supplemented with 0.5 μM of specific primer pairs (listed in supplementary table 2). Real-time quantitative PCRs were run on a light cycler rapid thermal system (LightCycler®480 2.0 Real time PCR system, Roche) with 20 sec of denaturation at 95°C, 20 sec of annealing at 60°C and 20 sec of extension at 72°C for all primers, and analyzed by the comparative CT (ΔCT) method.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!