The largest database of trusted experimental protocols

Em 410 ls

Manufactured by Philips

The EM-410 LS is a laboratory equipment product manufactured by Philips. It is a low-voltage transmission electron microscope designed for high-resolution imaging and analysis of various samples.

Automatically generated - may contain errors

2 protocols using em 410 ls

1

Biosynthesis of Silver Nanoparticles from Chlorella

Check if the same lab product or an alternative is used in the 5 most similar protocols
Silver bionanoparticles (AgNPs) were synthesized from Chlorella pyrenoidosa (NCIM 2738) procured from National Center for Industrial Microorganism, Pune, India. Batch cultures of C. pyrenoidosa were grown in Bold's basal medium. The culture was used in the mid-exponential growth phase. Nanoparticles were synthesized using cell extract by the methodology outlined by Aziz et al., 2015.[9 (link)] Culture was collected in falcon tubes and centrifuged. The pellet was washed thrice with distilled water followed by boiling for 5 min. The suspension was cooled and centrifuged at 10,000 rpm for 10 min. The supernatant was harvested and used as a cell extract. About 10 ml cell extract was mixed with 90 ml 1 mM AgNO3 solution for 24 h. Change in the color indicated the formation of silver nanoparticles. Transmission Electron Microscope (Philips, EM-410 LS) was used to observe the morphology of the biosynthesized Ag NPs. The size of the AgNPs was determined to be 8 ± 2 nm. Energy dispersive X-ray analysis was performed to confirm the presence of elemental silver in the AgNPs.
+ Open protocol
+ Expand
2

Comprehensive Characterization of Synthesized Catalysts

Check if the same lab product or an alternative is used in the 5 most similar protocols
The synthesized catalysts were analyzed for structural information using an X-ray diffractometer (Panalytical’s X’Pert Pro, Malvern, UK) with a Cukα radiation source. The experiments were performed in the 2θ scanning range of 20–70 degrees with step size of 0.02°. The particle size of catalysts was obtained with the help of a transmission electron microscope (EM-410 LS, Philips, Amsterdam, The Netherlands). The surface morphology of the catalysts was examined using a scanning electron microscope (SEM, Hitachi, Tokyo, Japan). X-ray photoelectron spectroscopy (Thermofisher Scientific, Nexsa base, Waltham, MA, USA) was employed for the determination of elemental presence and their valence states. The metal-stretching vibrations in the synthesized catalysts were performed with the help of a Raman spectrometer (Raman Horiba, Lab RAM HR evolution). The bandgap estimation was performed by analysis of the absorbance spectra recorded using a UV-VIS-NIR spectrophotometer (Perkin Elmer, Waltham, MA, USA). The magnetic properties of the catalysts were investigated using a vibrating sample magnetometer (Micrösense, EV7) to record the room temperature M-H loop at a field strength of 15,000 Oe. Photoluminescence (PL) spectra were recorded on a FS5 spectrophotometer (Edinburgh Instruments, Edinburgh, UK).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!