The largest database of trusted experimental protocols

6 protocols using variomacs magnet

1

B Cell Proliferation and Differentiation Assay

Check if the same lab product or an alternative is used in the 5 most similar protocols
Splenocytes were enriched for B cells by negative selection using the VarioMACS magnet, LD depletion columns, streptavidin microbeads (Miltenyi Biotec, Germany) and biotin-conjugated mouse anti-CD43 (S7). Enriched B cells were stained using the CellTrace Violet Cell Proliferation Kit (ThermoFisher) at a concentration of 1.5 μM. Enriched B cells or murine 38B9 cells were cultured in were cultured in complete RPMI-1640 containing 10% fetal bovine serum (Wisent, St. Bruno, QC, Canada), 5 × 105 M β-mercaptoenthanol (Sigma-Aldrich, St. Louis, MO, United States), 0.01 M HEPES (Sigma-Aldrich), and 1X penicillin/streptomycin/L-glutamine (Wisent). WEHI-279 cells were cultured in complete DMEM medium containing 4.5 g/L glucose (Wisent). Cells were maintained in 5% CO2 at 37°C. B cells were stimulated with LPS 0111:B4 (10 μg/ml, List Biological Laboratories, Campbell, CA, United States), 100 ng/ml CD40L (R&D Systems, Minneapolis, MI, United States), 10 ng/ml Interleukin-4 (R&D Systems), and/or 10 ng/ml Interleukin-5 (R&D Systems). Cultured plasmablasts were analyzed by flow cytometry on day 3, 4, or 5 of culture.
+ Open protocol
+ Expand
2

Neutrophil Isolation via Negative Immunomagnetic Separation

Check if the same lab product or an alternative is used in the 5 most similar protocols
The neutrophils were isolated and purified using negative immunomagnetic separation as described by Hu [29 (link)]. Blood samples (5 mL) were added to an equal volume of Dextran T500 (30 g/L, w/v in saline) and bathed in 37°C water for 30 min to allow erythrocytes sedimentation. The leukocyte-rich supernatant was taken and centrifuged at 800 rpm (Eppendorf, Centrifuge 5804 R, Germany) for 5 min. 0.2% NaCl (7 mL) solution was added to remove the residual erythrocytes. 1.6% NaCl (7 mL) supplemented with 0.1% glucose was added for hypertonic rescue of leukocyte. The leukocyte was collected, washed off erythrocyte debris, and suspended in PBS (1 mL). Anti-CD 2 (15 μg), anti-CD 5 (20 μg), anti-CD 45R (100 μg), anti-F4/80 (2 μg), and anti-ICAM-1 (6 μg) were added to the cells, and the cells were incubated at 4°C for 30 min. Excess antibodies were removed, and cells were suspended in PBS (80 μL) and incubated with goat anti-rabbit IgG microbeads (20 μL) at 4°C for 15 min. The leukocyte-microbead mixture was then added to the column which was connected to a VarioMACS Magnet (Miltenyi Biotec, Germany). Neutrophils were collected.
+ Open protocol
+ Expand
3

Enrichment of Late-Stage P. falciparum

Check if the same lab product or an alternative is used in the 5 most similar protocols
Routine erythrocytic P. falciparum cultures are an asynchronous culture consisting of rings, trophozoites, schizonts and merozoites. To enrich for the late stages of erythrocytic development, parasites at high parasitaemia (>15%) were subjected to magnetic selection [37 (link)]. Parasitised erythrocytes were passed over a CS column (Miltenyi Biotec, Surrey, UK) which was mounted on a VarioMacs magnet (Miltenyi Biotec, Surrey, UK). The column was then washed with incomplete medium (RPMI 1640 supplemented with 25 mM HEPES, hypoxanthine [50 μg/ml], 0.16% w/v glucose) to remove unparasitised erythrocytes and was then removed from the magnet, a further wash with incomplete medium eluting late-stage parasitised erythrocytes.
+ Open protocol
+ Expand
4

Purification of P. falciparum Trophozoites and Schizonts

Check if the same lab product or an alternative is used in the 5 most similar protocols
The P. falciparum (ITO4/A4) laboratory clone was cultured in erythrocytes as previously described [16] (link), [17] (link). All cultures used in experiments were negative for Mycoplasma spp. based on the absence of mycoplasma enzyme activity using the MycoAlert Mycoplasma detection kit (Lonza Biologicals, Verviers, Belgium). Trophozoite and schizont stages of P. falciparum cultures were enriched to >90% purity by magnetic column isolation. Briefly, parasite cultures were centrifuged at 500 g for 5 minutes; the cell pellet was resuspended in 3 mL of supplemented serum-free RPMI-1640 (RPMI-SF containing 16 mM D-glucose (Sigma), 2 mM L-glutamine (Sigma), 37.5 mM HEPES (Lonza), 2.5 µg/mL gentamicin (Sigma), 1X HT supplement (Gibco, Invitrogen), pH 7.2–7.4) and applied to a LS column in a VarioMACS magnet (Milteny Biotec, Bergish-Gladbach, Germany). The column was washed with RPMI-SF until erythrocytes from the parasite culture were absent from the flow–through. The column was then removed from the magnet and the paramagnetic, parasitized cells were eluted in RPMI-SF. Purity of isolate was confirmed to be >90% by microscopic examination of Giemsa-stained thin film blood smear. All cultures used in experiments were negative for Mycoplasma spp.
+ Open protocol
+ Expand
5

Measuring Parasite and Infected Cell Volumes

Check if the same lab product or an alternative is used in the 5 most similar protocols
The volume of saponin-isolated 3D7 trophozoites and of erythrocytes infected with 3D7 trophozoites was measured using a Beckman Coulter Multisizer 4 fitted with a 100 μm ‘aperture tube’. In the case of isolated parasites, the cells were washed and resuspended (at 37°C) in pH 7.10 Experimental Saline Solution. The electrolyte solution within the aperture tube was the same as the Experimental Saline Solution except that it lacked glucose. For experiments on infected erythrocytes, the infected cells were separated from uninfected erythrocytes using a Miltenyi Biotec VarioMACS Magnet [47 (link), 48 (link)] and the cells were maintained at 37°C in bicarbonate-free RPMI supplemented with 25 mM HEPES, additional glucose (11 mM) and 0.2 mM hypoxanthine, and pH-adjusted to 7.40. For these measurements the electrolyte solution within the aperture tube differed only from this medium in that it was not supplemented with hypoxanthine or additional glucose. For each measurement of cell volume, approximately 20,000 pulses (each corresponding to the passage of a single cell through the aperture) were recorded. The median volume of the cells within each sample was determined by fitting a log Gaussian distribution curve to the population data.
+ Open protocol
+ Expand
6

Purified Plasmodium PBMC Proliferation Assay

Check if the same lab product or an alternative is used in the 5 most similar protocols
Upon thawing, cells were washed thrice in complete medium (RPMI-1640 containing 10% heat inactivated human serum, 2 nM L-glutamine, 100 U/ml of penicillin and 100 mg/ml of streptomycin sulPHAte), re-suspended in complete medium, counted using trypan blue (Sigma) and aliquoted into U-bottom 96-well plates.
For T cell proliferation assays, 2 × 105 cells in 100 μl was added per well. Subsequently, 100 μl of purified fresh pRBCs at trophozoite/schizont stage (Pf 7G8, Pf NF54 or Plasmodium knowlesi A1H1.1) or uRBCs (6 × 105 cells/well), 1% phytohaemagglutinin (PHA; Gibco) or media only was added, and PBMCs were cultured for 7 days at 37 °C, 5% CO2. Each treatment was tested in triplicate.
For intracellular cytokine staining, 5 × 105 cells in 100 μl were added per well. Subsequently, 100 μl of purified fresh Pf 7G8 pRBCs or uRBCs (1 × 106 cells/well), 1% PHA or media only was added, and PBMCs were cultured for 36 h at 37 °C, 5% CO2. Each treatment was tested in triplicate. Sorbitol-synchronised, Mycoplasma-negative, live, late-stage trophozoite/schizont stage pRBCs used in the above in vitro assays were purified by magnetic separation over CS columns (Miltenyi Biotec) on a VarioMACs magnet (Miltenyi Biotec) for these assays.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!