The largest database of trusted experimental protocols

Pcr grade water

Manufactured by Sartorius
Sourced in Israel

PCR grade water is a highly purified water designed for use in polymerase chain reaction (PCR) applications. It is carefully processed to remove impurities, ions, and other contaminants that could interfere with PCR experiments. This water meets strict quality standards and is suitable for a variety of molecular biology techniques requiring high-purity water.

Automatically generated - may contain errors

5 protocols using pcr grade water

1

Developing qPCR primers for Spirocerca lupi

Check if the same lab product or an alternative is used in the 5 most similar protocols
A sequence of the cytb gene from GenBank (KC305876.1) [16 (link)] was used for the development of novel primers for this locus. Hence, primers Slcytb-F (5′-ACT GCG GGG GAG TCT TTC T-3′) and Slcytb-R (5′-AGT AAT AAC AAC CGC CGC CC-3′) were designed to amplify a 260 bp fragment of the cytb gene. Primers were used at a final concentration of 250 nM. Each reaction consisted of 0.5 μl of each primer, 0.6 μl of SYTO-9 (Invitrogen), 5.4 μl of PCR grade water (Biological Industries Inc.), 10 μl of Maxima HotStart Master Mix® (Thermo Fisher Scientific Inc.) and 3 μl of DNA. The program consisted of an initial hold at 95 °C for 4 min and 45 cycles of 95 °C for 5 s, 57 °C for 15 s and 72 °C for 5 s. A melt curve from 75 °C to 90 °C was constructed, with 1 °C/s increments, followed by a hybridization step. The HRM curve was constructed from 75 °C to 90 °C with 0.1 °C/s increments.
All HRM qPCRs were run in the Rotor Gene 6000 Cycler (Qiagen, Hilden, Germany). Each reaction was run with positive, negative and non-template controls (NTC). Reaction controls included S. lupi adult-DNA (positive control), DNA from a S. lupi-negative dog fecal sample (negative control, determined by fecal flotation in three consecutive samples), a point of the standard curve by triplicate and NTC with PCR-grade water.
+ Open protocol
+ Expand
2

Characterization of S. lupi ITS1 Spacer

Check if the same lab product or an alternative is used in the 5 most similar protocols
The S. lupi ITS1 spacer was characterized from four adult S. lupi specimens using primers rDNA2 [13 ] and rDNA1.58S [14 ], following a previously described protocol [14 ]. Then, the amplified sequence was inserted into pCR2-TOPO vectors (Thermo Fisher Scientific Inc.) and cloned. Specific primers were designed using Primer-BLAST [15 (link)], to amplify a 135 bp fragment within the ITS1 of S. lupi. The HRM qPCR assay used primers SlITS-F (5′-AAA CGG TGT CCC ATG TTG G-3′) and SlITS-R (5′-GCA GCA CAA TAG CTT GAC GC-3′) at a final concentration of 500 nM. Each reaction consisted of 1 μl of each primer, 0.6 μl of SYTO-9 (Invitrogen, California, USA), 4.4 μl of PCR grade water (Biological Industries Inc.), 10 μl of Maxima HotStart Master Mix® (Thermo Fisher Scientific Inc.) and 3 μl of DNA. The amplification reaction consisted of an initial hold at 95 °C for 4 min, followed by 45 cycles of 95 °C for 5 s, 60 °C for 15 s and 72 °C for 10 s. A melt curve from 80 °C to 95 °C was constructed with increments of 1 °C/s, followed by a hybridization step from 90 °C to 50 °C. An HRM curve was constructed from 70 °C to 85 °C, with 0.1 °C/s increments.
+ Open protocol
+ Expand
3

Molecular Detection of Strongyloides lupi

Check if the same lab product or an alternative is used in the 5 most similar protocols
DNA was extracted from 0.2 g of fecal sample using the Qiagen Fast DNA Stool Mini Kit (Qiagen, Hilden, Germany) with some modifications [34 (link)]. DNA purity and concentration were verified using a NanoDrop spectrophotometer (Thermo-Fisher Scientific, Waltham, MA, USA).
After DNA extraction, all samples were tested in triplicates by quantitative PCR, coupled with a high-resolution melt analysis (HRM qPCR) that detects a 135 bp fragment of the internal transcribed spacer 1 (ITS1) of S. lupi. Primers SlITS1-F and SlITS1-R were used at final concentrations of 500 mM, and the PCR program was run as previously described [34 (link)]. Each PCR run included DNA from a S. lupi eggs suspension as positive control, DNA from a S. lupi-negative fecal sample as negative control (determined negative by fecal flotation of three consecutive fecal samples) and a non-template control with PCR-grade water (Biological Industries, Beit-Haemek, Israel). Samples were considered positive when all three replicates had been amplified.
Amplicons from positive DNA samples were purified (Exo-SAP, New England Bio-Labs, Ipswich, MA, USA) and sequenced using the BigDye Terminator cycle sequencing chemistry (Applied Biosystems ABI3700 DNA Analyzer and ABI’s Data collection and Sequence analysis software, ABI, Carlsbad, CA, USA).
+ Open protocol
+ Expand
4

Quantitative Detection of Strongyloides lupi

Check if the same lab product or an alternative is used in the 5 most similar protocols
DNA from the suspension with 14,200 epg of S. lupi was serially diluted 3-fold, to a final volume of 100 μl in PCR-grade water (Biological Industries, Kibbutz Beit-Haemek, Israel). In total, 12 S. lupi-standard concentrations, ranging from 14,200 to 0.07 epg, were prepared for the qPCR analyses. The egg standards were run in triplicates to build a standard curve, and estimate the detection limit, slope, intercept, linear regression coefficient and efficiency for each of the HRM qPCRs.
+ Open protocol
+ Expand
5

Sensitive PCR Detection of S. lupi

Check if the same lab product or an alternative is used in the 5 most similar protocols
Primers for a fragment of the 18S locus of S. lupi available in GenBank (HQ674750.1) were designed using Primer-BLAST [15 (link)]. Accordingly, primers Sl18S-F (5′-AAG CTC CGA CTT TTG GAC GA-3′) and Sl18S-R (5′-GTC ACT ACC TCC TCA TGC CG-3′) were constructed to amplify a 270 bp fragment of the 18S gene and used at a final concentration of 500 nM. The reactions consisted of 1 μl of each primer, 0.6 μl of SYTO-9 (Invitrogen), 4.4 μl of PCR grade water (Biological Industries Inc.), 10 μl of Maxima HotStart Master Mix® (Thermo Fisher Scientific Inc.) and 3 μl of DNA. The amplification reaction consisted of an initial hold of 95 °C for 4 min, followed by 50 cycles of 95 °C for 5 s, 59 °C for 15 s and 72 °C for 10 s. A melt curve from 80 °C to 95 °C was constructed with 1 °C/s increments, followed by a hybridization step from 90 °C to 50 °C. An HRM was constructed from 80 °C to 90 °C with 0.1 °C/s increments.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!