Gl10 b
The GL10-B is a general-purpose laboratory power supply from Thorlabs. It provides a variable output voltage up to 30 V and a maximum current of 3 A. The power supply features a digital display for monitoring the output.
Lab products found in correlation
4 protocols using gl10 b
Pulse Cleaning via Cross-Polarized Wave
Two-Photon Microscopy Setup for In Vivo Imaging
A low noise current preamplifier (Stanford Research Systems, SR570) was used to amplify the photomultiplier tube photocurrent, which was further digitized using a data acquisition board (National Instruments, PCI-6110). ScanImage (r 3.8.1) software was used to interface instrument control and generation of galvometric scan command. Image acquisition was accomplished using a custom Matlab script interfaced with z-drive of the microscope. The digitized signal was analysed using Matlab, Origin and ImageJ for further analysis.
Quantitative SHG Microscopy of Microtubules
Preprint). The sample was illuminated by a mode-locked Ti/sapphire laser (Chameleon Vision II; Coherent, Inc.) with an 810-nm wavelength, 80-MHz repetition rate, and 200-fs pulse duration through a Glan-laser polarizing prism (GL10-B; Thorlabs), high-speed polarization controller (350-160 and 350-80; Conoptics, Inc.), and a 40× dry objective lens (NA 0.95, CFI Apo; Nikon). The emitted light was detected with a photon-counting photomultiplier tube module (H10680-210; Hamamatsu Photonics) through a 100× objective lens (NA 1.45, CFI Apo, oil; Nikon) and filters (FF01-680/SP and FF01-405/10-25; Semrock). The SHG intensity data on the incident polarization angle (θ) were fitted with the following theoretical function to obtain three fitting parameters α, χzzz, and χzxx: where α denotes the angle of average orientation of a microtubule bundle and χzzz and χzxx are two components of SHG susceptibility tensor (Psilodimitrakopoulos et al., 2013 (link); Kaneshiro et al., 2018 (link)
Preprint).
Upconversion Nanoparticle Emission Spectroscopy
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!