The largest database of trusted experimental protocols

2 protocols using foxp3 alexa fluor 700

1

Analyzing Tumor Immune Microenvironment

Check if the same lab product or an alternative is used in the 5 most similar protocols
To study the immune cells in distant tumors, right tumors were harvested from mice in different groups (n = 5) and stained with Viobility 405/520 Fixable Dye (Miltenyi), CD45.2 APC-CY7 (Biolegend, Clone: 104), CD3e FITC (Biolegend, Clone: 17A2), CD8a PE-vio615 (Miltenyi, Clone: REA601), PD-1 PE (Biolegend, Clone: 29F.1A12), TIM3 APC (Miltenyi, Clone: REA602), CD4 VioBlue (Miltenyi, Clone: REA604), and Foxp3 Alexa Fluor 700(Biolegend, Clone: MF-14.1A12) antibodies, according to the manufacturer's protocols.
Briefly, tumor tissues were cut into small pieces and digested with collagenase and DNase. Then, cell suspension was filtered through a 75-μm cell mesh and resuspended in PBS (pH 7.4) with 0.5% FBS for further analysis. Flow cytometric analysis was performed using a FACS LSRFortessa flow cytometer (BD).
Tumor-infiltrating cytotoxic T lymphocytes (CTL) and helper T cells were CD45+CD3+CD4CD8+ and CD45+CD3+CD4+CD8, respectively. Then, the expressions of PD-1 and TIM-3 in cytotoxic T lymphocytes were analyzed. Further, CD4+ helper T cells were classified into regulatory T cells (Tregs) (CD3+CD4+Foxp3+) and effective T cells (CD3+CD4+Foxp3).
+ Open protocol
+ Expand
2

Antibody-mediated Immune Profiling

Check if the same lab product or an alternative is used in the 5 most similar protocols
Therapeutic anti-CTLA-4 (clone 9H10) antibody and isotype control antibody was purchased from BioXcell (cat: BE0131 and BE0087). Antibodies used for flow cytometry were purchased from the following sources (dilutions are indicated in parentheses): eBioscience (CD45.2 Alexa Fluor 700, cat: 56-0454 (1:200), CD3 PE-Cy7, cat: 25-0031 (1:200), CD4 ef450, cat: 48-0041 (1:200), CD4 APC-efluor780, cat: 47-0041 (1:400), CD8 PerCP-efluor710, cat: 46-0083 (1:200), CD11b APC-efluor 780, cat: 47-0112 (1:600), ICOS PE, cat: 12-5985 (1:200), ICOSL PE, cat: 12-5985 (1:200), CTLA-4 PE, cat: 12-1522 (1:200), NK1.1 PE, cat: 12-5941 (1:200), IFNγ PE, cat: 12-7311 (1:200), FoxP3 Alexa Fluor 700, cat: 56-5773 (1:100), FoxP3 APC, cat: 17-5773 (1:200), GATA-3 PE, cat: 12-9966 (1:100), RORγT PerCP-efluor710, cat: 46-6981 (1:100), Tbet PE-Cy7, cat: 25-5825 (1:100), EOMES efluor 450, cat: 48-4875 (1:100), PD-1 PE-Cy7, cat: 25-9985, (1:200)), Biolegend (CD3 BV570, cat: 100225 (1:100), CD11b BV570, cat: 101233 (1:50), Bcl-6 Alexa 594, cat: 648308 (1:50)), Invitrogen (Granzyme B PE-Texas Red, cat: GRB17 (1:125), Granzyme B APC, cat: GRB05 (1:125)) and BD Pharmingen (Ki-67-Alexa Fluor 488, cat: 561165 (1:50), CXCR5-biotin, cat: 551960 (1:100)).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!