T1-weighted MRIs were obtained with the following parameters: Repetition time (TR), 440 msec; Echo time (TE), 2.46 msec; TI, 900 msec; slice thickness, 5 mm; matrix size, 256×320; field of view (FOV), 220×220 mm2; and angle, 130°. T2-weighted MRIs were acquired with the following parameters: TR, 5,000 msec; TE, 93 msec; slice thickness, 5 mm; matrix size, 320×320; interlayer spacing, 1.5 mm; and FOV, 220×220 mm2. DTI scans were performed using the following parameters: TR, 5,000 msec; TE, 97 msec; b, 0 and 1,000 sec/mm3; slice thickness, 3 mm; matrix size, 128×128; scan time, 5 min 42 sec; and diffusion gradient directions number, 64.
Trio tim 3 t mri scanner
The Trio Tim 3 T MRI scanner is a magnetic resonance imaging (MRI) system manufactured by Siemens. It operates at a magnetic field strength of 3 Tesla, providing high-resolution images for diagnostic purposes. The core function of the Trio Tim 3 T MRI scanner is to generate detailed images of the body's internal structures using powerful magnetic fields and radio waves.
Lab products found in correlation
4 protocols using trio tim 3 t mri scanner
MRI Acquisition Protocol for Neuroimaging
T1-weighted MRIs were obtained with the following parameters: Repetition time (TR), 440 msec; Echo time (TE), 2.46 msec; TI, 900 msec; slice thickness, 5 mm; matrix size, 256×320; field of view (FOV), 220×220 mm2; and angle, 130°. T2-weighted MRIs were acquired with the following parameters: TR, 5,000 msec; TE, 93 msec; slice thickness, 5 mm; matrix size, 320×320; interlayer spacing, 1.5 mm; and FOV, 220×220 mm2. DTI scans were performed using the following parameters: TR, 5,000 msec; TE, 97 msec; b, 0 and 1,000 sec/mm3; slice thickness, 3 mm; matrix size, 128×128; scan time, 5 min 42 sec; and diffusion gradient directions number, 64.
High-Resolution 3D Brain Imaging
Quantifying Early Cartilage Injury Post-Surgery
Evaluating Neo-Cartilage Morphology
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!