The largest database of trusted experimental protocols

Distilled em grade

Sourced in United States

Distilled EM grade is a high-purity water product specifically formulated for use in electron microscopy applications. It is designed to meet the stringent requirements of electron microscopy, providing a contaminant-free solution for various processes and applications within the field.

Automatically generated - may contain errors

3 protocols using distilled em grade

1

Immunolocalization of PEP51 in Ciona Ovaries

Check if the same lab product or an alternative is used in the 5 most similar protocols

Ciona ovaries were fixed in 4% paraformaldehyde (PFA) and 0.1% glutaraldehyde (GA) (Distilled EM grade, Electron Microscopy Sciences, Hatfield, PA, USA) in 0.1M phosphate buffer (PB) pH 7.4 at 4 °C for 1h. After washing, the samples were dehydrated and infiltrated with a 50:50 mixture of ethanol and resin, transferred to a fresh 100% resin (LR white, London Resin, Berkshire, UK), and polymerized by an ultraviolet polymerizer. Ultra-thin sections of the polymerized resins were mounted on nickel grids and incubated with anti-PEP51 antibody, followed by 15nm gold particle-labelled secondary antibody. The grids were placed in 2% GA in 0.1 M PB and dried, then stained with 2% uranyl acetate for 15 min and a Lead stain solution (Sigma-Aldrich, Tokyo, Japan). The samples were observed under a transmission electron microscope (JEM-1400Plus, JEOL, Tokyo, Japan) at 100 kV. Digital images were obtained with a CCD camera (EM-14830RUBY2, JEOL). Immunoelectron microscopy was carried out by Tokai Electron Microscopy, Inc. (Nagoya, Japan).
+ Open protocol
+ Expand
2

Electron Microscopy Sample Preparation

Check if the same lab product or an alternative is used in the 5 most similar protocols
The samples were fixed with 2% paraformaldehyde (PFA), 2% glutaraldehyde (Distilled EM grade, Electron Microscopy Sciences, Hatfield, PA) in 0.1 M PBS pH 7.4 at 4°C overnight. After the fixation, the samples were rinsed three times with 0.1 M PBS for 30 minutes, followed by post-fixation with 2% osmium tetroxide(OsO4) in PBS at 4°C for two hours. The samples were then infiltrated with propylene oxide (PO) twice for 15 min and put them into a mixture of PO and resin (Quetol-812; Nisshin EM Co.,Tokyo, Japan) for one hour, followed by keeping the cap of tube open, and PO was volatilized overnight. The samples was transferred to a fresh 100% resin, and polymerized at 60°C for 48 hours. The blocks were ultra-thin sectioned at 70 nm with a diamond knife using a ultramicrotome (ULTRACUT UCT; Leica, Wetzlar, Germany) and sections were placed on copper grids. They were stained with 2% uranyl acetate at room temparature for 15 min. and then rinsed with distilled water followed by being secondary-stained with Lead stain solution (Sigma-Aldrich) at room temparature for three minutes. The grids were observed by a transmission electron microscope (JEM-1200EM; JEOL Ltd., Akishima, Japan) at an acceleration voltage of 80 kv. Digital images (2048×2048pixels) were taken with a CCD camera (VELETA; Olympus Soft Imaging Solutions GmbH, Münster, Germany).
+ Open protocol
+ Expand
3

Scanning and Transmission Electron Microscopy of Polymer Fibers

Check if the same lab product or an alternative is used in the 5 most similar protocols
For scanning electron microscopy (SEM), high-resolution images were obtained using a scanning electron microscope (SEM JCM-5000; JEOL Ltd., Tokyo, Japan) operating at 10 kV. A 5 nm thick platinum layer was deposited on the samples by sputtering (MSP 30T; Showa Shinku Device, Sagamihara, Japan). The angular distributions and fiber diameters were evaluated using ImageJ software (National Institutes of Health, Bethesda, MD, USA).
For transmission electron microscopy (TEM), the samples were fixed with 2% glutaraldehyde (Distilled EM Grade, Electron Microscopy Sciences, Hatfield, PA, USA) in NaHCa buffer (100 mM NaCl, 30 mM HEPES, 2 mM CaCl2, adjusted to pH 7.4 with NaOH) and then postfixed with 0.25% osmium/0.25% K4Fe(CN)6, with 1% tannic acid and finally with 50 mM uranyl acetate. The samples were then washed, dehydrated in a series of ethanol solutions, and embedded in TABA EPON 812 resin (TAAB Laboratories Equipment Ltd., Reading, UK). After polymerization at 65°C, ultra-thin sections (60–100 nm) were cut vertical to the PMGI fiber orientation using an ultramicrotome (Leica FC6, Vienna, Austria). The sections were then mounted on EM grids, stained with lead citrate, and observed by TEM (JEOL JEM1400).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!