The largest database of trusted experimental protocols

Dawn heleos 8 mals detector

Manufactured by Wyatt Technology
Sourced in United States

The Dawn Heleos 8 MALS detector is a multi-angle light scattering instrument designed for the characterization of macromolecules and nanoparticles in solution. It measures the scattered light intensity at multiple angles to determine the molar mass, size, and conformation of analytes. The device is capable of providing accurate and reliable data on the physical properties of a wide range of samples.

Automatically generated - may contain errors

3 protocols using dawn heleos 8 mals detector

1

SEC-MALS Analysis of P22-Cas9 Complex

Check if the same lab product or an alternative is used in the 5 most similar protocols
P22-Cas9 and WT P22 were injected using an Agilent 1200 autosampler with 100 mM phosphate, 50 mM sodium chloride, pH 7.0 buffer. The buffer was degassed using an inline degasser. Samples were run over a WTC-100S5G guard column (Wyatt Technology Corporation) and a WTC-100S5 SEC column designed specifically for MALS (Wyatt Technology Corporation). The eluant was monitored using an in-line UV-Vis detector on the Agilent system as well as a Dawn Heleos 8 MALS detector and an Optilab T-rex RI detector (Wyatt Technology Corporation). All data were analyzed using ASTRA software from Wyatt. Samples were stored in the autosampler at room temperature, and the sample chamber in the RI detector was held at 25°C to reduce thermal drift. Molecular weights were determined from MALS and RI signals using the ASTRA software and dn/dc values of 0.185 was used for all proteins. The Cas9/P22 ratio was determined by subtracting the molecular weight of P22-Cas9 from P22 WT (see Figure 2c) and dividing by the molecular weight of Cas9.
+ Open protocol
+ Expand
2

Molecular Weight Determination of Aggregates

Check if the same lab product or an alternative is used in the 5 most similar protocols
The molecular weight of the aggregates was determined using SEC in combination with multi-angle light scattering (MALS). SEC-MALS was performed using an Äkta Explorer 100 instrument (GE Healthcare) equipped with a Yarra SEC-4000 column (Phenomenex), an Optilab T-Rex refractive index (RI) detector (Wyatt) and a DAWN HELEOS 8+ MALS detector (Wyatt). The samples were analyzed at room temperature (RT) using 0.1 μm filtered PBS (pH 7.0).
+ Open protocol
+ Expand
3

SEC-MALS Analysis of RG-II Polysaccharides

Check if the same lab product or an alternative is used in the 5 most similar protocols
SEC-MALS analysis was performed using an Agilent 1260 HPLC system (Agilent, USA) and a Superdex 75 10/300 SEC column (Cytiva, USA) connected in series to an Optilab T-rEX differential refractometer (Wyatt Technology Co., USA) operating at 25 °C and a Dawn Heleos 8 MALS detector (Wyatt Technology Co., USA) equipped with a He–Ne laser (λ = 660 nm). The column was eluted at a flow rate of 0.5 mL/min with 50 mM ammonium formate pH 5. All data were acquired and processed using ASTRA 7 software (Wyatt Technology Co., USA).
Native esterified wine and celery RG-II monomer and dimer (1–2 mg) were dissolved in ultrapure water and filtered using 0.45 μm nylon Costar® Spin-X® centrifuge tube filters (Corning, USA). The injection volume was 100 μL and a minimum of three injections for each polysaccharide were performed. The dn/dc value for RG-II was calculated by analysis of the purified native celery monomer. Different amounts of monomer (1.0, 0.5, 0.2, and 0.1 mg) were injected, and the dn/dc value was obtained on-line assuming 100% mass recovery for the peak of interest. The calculated dn/dc value (0.122 ± 0.003 mg/mL) was used for all RG-II analyses.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!