The largest database of trusted experimental protocols

M1 integrator

Manufactured by PerkinElmer
Sourced in United States

The M1 Integrator is a laboratory equipment designed to measure and record the integrated output of various analytical instruments. It functions as a data acquisition and processing device, capturing and processing signals from connected instruments to provide integrated measurements over time. The M1 Integrator is a core component used in analytical workflows, but a detailed description of its intended use or interpretation of its function is not available.

Automatically generated - may contain errors

5 protocols using m1 integrator

1

Comprehensive Fatty Acid Profiling of Diets and Tissues

Check if the same lab product or an alternative is used in the 5 most similar protocols
Fatty acid profiles of mouse diets and tail and colon tissues were analyzed by gas chromatography (GC), as described previously [18 (link),97 (link)]. Briefly, tissue or food samples were ground to powder under liquid nitrogen and subjected to total lipid extraction and fatty acid methylation by 14% boron trifluoride (BF3)-methanol reagent (Sigma-Aldrich) at 100 °C for 1 h. Fatty acid methyl esters were analyzed using a fully automated HP5890 gas chromatography system equipped with a flame-ionization detector (Agilent Technologies, Palo Alto, CA, USA). The fatty acid peaks were identified by comparing their relative retention times with the mixed commercial standards (NuChek Prep, Elysian, MN, USA), and the area percentage for all resolved peaks were analyzed by using a PerkinElmer M1 integrator. The fatty acids examined as total n-6 PUFA with GC include: Linoleic acid (C18:2n6), Gamma-linolenic acid (C18:3n6), Eicosadienoic acid (C20:2n6), Dihomo-gamma-linolenic acid (C20:3n6), Arachidonic acid (C20:4n6), Docosadienoic acid (C22:2n6), Adrenic acid (C22:4n6) and Docosapentaenoic acid (22:5n6). The fatty acids examined as total n-3 PUFA with GC include: α-Linolenic acid (C18:3n3), Eicosatrienoic acid (C20:3n3), Eicosapentaenoic acid (C20:5n3), Docosapentaenoic acid (C22:5n3), and Docosahexaenoic acid (C22:6n3).
+ Open protocol
+ Expand
2

Fatty Acid Profiling by GC

Check if the same lab product or an alternative is used in the 5 most similar protocols
Fatty acid profiles of mouse diets and tail tissues (n = 9–10 per group) were analyzed by GC as described previously16 (link),55 (link). Briefly, tissue or food samples were ground to powder under liquid nitrogen and subjected to total lipid extraction and fatty acid methylation by 14% boron trifluoride (BF3)-methanol reagent (Sigma-Aldrich) at 100°C for 1 h. Fatty acid methyl esters were analyzed using a fully automated HP5890 GC system equipped with a flame-ionization detector (Agilent Technologies, Palo Alto, CA). The fatty acid peaks were identified by comparing their relative retention times with the commercial mixed standards (NuChek Prep, Elysian, MN), and area percentage for all resolved peaks was analyzed by using a Perkin-Elmer M1 integrator.
+ Open protocol
+ Expand
3

Fatty Acid Analysis of Tissue Samples

Check if the same lab product or an alternative is used in the 5 most similar protocols
Fatty acid analysis of tail and liver tissues was performed as previously described [50 (link)]. Briefly, frozen tissue samples were ground to a powder under liquid nitrogen using a mortar and pestle. Lipid extraction and fatty acid methylation was performed by the addition of 14% (w/v) boron trifluoride (BF3)-methanol reagent (Sigma-Aldrich) followed by heading at 100 °C for 1 h. Fatty acid methyl esters (FAME) were analyzed using a fully automated HP5890 gas chromatography system equipped with a flame-ionization detector (Agilent Technologies, Palo Alto, CA). The fatty acid peaks were identified by comparing their relative retention times with the commercial mixed standards (NuChek Prep, Elysian, MN), and area percentage for all resolved peaks was analyzed by using a PerkinElmer M1 integrator.
+ Open protocol
+ Expand
4

Analyzing Fatty Acids in Brain and Tail Tissues

Check if the same lab product or an alternative is used in the 5 most similar protocols
For PUFA analysis, brain or tail tissues frozen in liquid nitrogen were ground into powder in liquid nitrogen. The powder was subjected to extraction of total lipids and fatty acid methylation by heating them at 100 °C for 1 h in a solution containing 2.5 ml hexane and 2.5 ml 14% boron trifluoride in methanol. Once the samples had cooled down to room temperature they were vortexed. Next, 1 ml water was added to the solution. In order to ensure that the concentration between the aqueous and the lipophilic phase was in equilibrium the samples were shaken by hand for 4 min. The phases were then separated by centrifugation and the lipophilic hexane phase containing fatty acid methyl esters was removed and dried under nitrogen. The fatty acid methyl ester residues were redissolved in 50 µl hexane and transferred into an autosampler vial. They were then analysed by GC using a fully automated Hewlett Packard 5890 system equipped with a flame ionization detector. Peaks of resolved fatty acids were identified by comparison with a fatty acid standard and the area under those resolved peaks represented their relative concentrations. The size of the areas was measured using a Perkin Elmer M1 integrator.
+ Open protocol
+ Expand
5

Fatty Acid Profiling in Mouse Tissues

Check if the same lab product or an alternative is used in the 5 most similar protocols
Fatty acid profiles of mouse diets, tail and intestinal tissues were analyzed by gas chromatography as described previously60 (link). Briefly, tissue or food samples were grounded to powder under liquid nitrogen and subjected to total lipid extraction and fatty acid methylation by 14% boron trifluoride (BF3)-methanol reagent (Sigma-Aldrich) at 100 °C for 1 h. Fatty acid methyl esters were analyzed using a fully automated HP5890 gas chromatography system equipped with a flame-ionization detector (Agilent Technologies, Palo Alto, CA). The fatty acid peaks were identified by comparing their relative retention times with the commercial mixed standards (NuChek Prep, Elysian, MN), and area percentage for all resolved peaks was analyzed by using a PerkinElmer M1 integrator.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!