The largest database of trusted experimental protocols

Ultraflex 3 maldi tof spectrometer

Manufactured by Bruker
Sourced in Germany

The Ultraflex III MALDI-TOF spectrometer is a high-performance mass spectrometry instrument designed for sensitive and accurate analysis of a wide range of samples. It utilizes matrix-assisted laser desorption/ionization (MALDI) technology and time-of-flight (TOF) mass analysis to provide precise mass determination of molecules.

Automatically generated - may contain errors

5 protocols using ultraflex 3 maldi tof spectrometer

1

Fullerene Derivatives Synthesis and Characterization

Check if the same lab product or an alternative is used in the 5 most similar protocols
C60 (99.5%) and C70 (95%) were purchased from SES Research and MER corporation respectively. CH2Cl2 was freshly distilled over CaH2 before use. All other reagents and solvents were purchased from Aldrich and used without further purification. Compounds 13 and 710 were synthesised according to previously reported procedure [20 (link)]. Infra-red spectra were measured as KBr discs using a Nicolet Avatar 380 FTIR spectrometer over the range 400–4000 cm−1. 1H and 13C NMR spectra were obtained using Bruker DPX 300, Bruker DPX 400, Bruker AV(III) 400 or Bruker AV(III) 500 spectrometers. Mass spectrometry was carried out using a Bruker microTOF spectrometer and a Bruker ultraFlexIII MALDI–TOF spectrometer using trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) as supporting matrix. UV–vis spectra were measured using a Lambda 25 Perkin Elmer Spectrometer. EPR spectra were obtained on a Bruker EMX EPR spectrometer.
+ Open protocol
+ Expand
2

MALDI-TOF MS Protein Profiling of Sand Flies

Check if the same lab product or an alternative is used in the 5 most similar protocols
Sample preparation and analysis by MALDI-TOF MS protein profiling followed a protocol optimized for sand flies [12 (link)]. In total, 20 specimens (10 collected in 2016, 10 collected in 2017) were analyzed. Thoraxes of dissected specimens were homogenized by a manual BioVortexer homogenizer (BioSpec, Bartlesville, USA) with sterile disposable pestles in 10 μl of 25% formic acid and briefly centrifuged at 10,000g for 15 s. Two microliters of the homogenate was mixed with 2 µl of freshly prepared MALDI matrix, which was an aqueous 60% acetonitrile/0.3% TFA solution of sinapinic acid (30 mg/ml, Bruker Daltonics, Bremen, Germany). One microliter of the mixture was then spotted on a steel MALDI plate in duplicate. Protein mass spectra were measured in a mass range of 4–25 kDa on an Ultraflex III MALDI-TOF spectrometer (Bruker Daltonics) as a sum of 2000 laser shots (20 × 100 shots from different positions of the sample spot) and analyzed by FlexAnalysis 3.4 software. For species identification and cluster analysis, the protein profiles were processed using MALDI Biotyper 3.1 and compared with reference spectra of an in-house database constructed using protein spectra of 25 different sand fly species. For MSP dendrogram creation, an individual main spectrum (MSP) was generated from each analyzed spectrum.
+ Open protocol
+ Expand
3

MALDI-TOF Mass Spectrometry Protein Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Two μl of the ethanol or the water protein extract were mixed with 2 μl of a MALDI matrix in a tube. One μl of the resulting mixture was deposited on the MALDI target and allowed to air-dry. The MALDI matrix was prepared daily as an aqueous 60% acetonitile/0.3% TFA solution of sinapinic acid (30 mg/ml; Sigma). Positive-ion mass spectra were measured in linear mode on an Ultraflex III MALDI-TOF spectrometer (Bruker Daltonics, Bremen, Germany) within a mass range of 2–25 kDa and calibrated externally using the Bruker Protein Calibration Standard I. Each acquired spectrum corresponded to an accumulation of 1000 laser shots (5×200 laser shots from different positions of the target spot). The spectra were exported to the MALDI Biotyper 3.1 software for data processing (normalization, smoothing, baseline subtraction, peak picking) and evaluation by cluster analysis. Only a maximum of 100 peaks with signal-to-noise ratio of >3 and relative intensity of at least 0.1% of the most intense peak from the spectra were considered for choosing peaks. For MSP dendrogram creation, an individual main spectrum was generated from each of the acquired spectra.
+ Open protocol
+ Expand
4

MALDI-TOF Protein Mass Profiling

Check if the same lab product or an alternative is used in the 5 most similar protocols
Protein mass spectra were measured on an Ultraflex III MALDI-TOF spectrometer (Bruker Daltonics) within a mass range of 3–25 kDa and with external calibration using the Bruker Protein Calibration Standard I. Each spectrum represented an accumulation of 1000 laser shots (20×50 laser shots from different positions of the sample spot). The generated spectra were visualized and compared with FlexAnalysis 3.3 software. MALDI Biotyper 3.1 software was further employed for data processing and for database creation of host blood protein profiles. At least three spectra for each host were used for the creation of reference MSP spectra with the following parameters: a maximum peak number of 100, S/N ratio above 3, and a minimum intensity of 1% of the most intense peak. The desired peak frequency for MSP reference spectra was 70%.
+ Open protocol
+ Expand
5

Molecular Identification of Specimens

Check if the same lab product or an alternative is used in the 5 most similar protocols
DNA was isolated from the remaining body parts with a QIAamp® DNA Mini Kit 250 (Qiagen, Hilden, Germany). PCR amplification of a 658-basepairs (bp) fragment of the cytochrome c oxidase subunit I (coxI) gene was performed using the primers LCO-1490/CoxUniEr following the protocol of Kniha et al. [22 ].
PCR was performed with an Eppendorf Mastercycler (Eppendorf AG, Hamburg, Germany). Bands were analysed with a Gel Doc™ XR + Imager (Bio-Rad Laboratories Inc., California, USA), cut out from the gel and purified with an Illustra™ GFX™ PCR DNA and Gel Purification Kit (GE Healthcare, Buckinghamshire, UK). Sequencing was performed with a Thermo Fisher Scientific SeqStudio (Thermo Fisher Scientific, Massachusetts, USA). Obtained sequences from both strands were aligned with ClustalX 2.1, edited with GeneDoc 2.7.0 and consensus sequences were blasted in the NCBI sequence database (GenBank) and compared to reference sequences.
MALDI-TOF protein profiling was done as previously described [23 (link), 24 (link)]. The protein extracts from thoraces of chosen specimens were mixed with a sinapinic acid matrix and mass spectra were acquired with an Ultraflex III MALDI-TOF spectrometer (Bruker Daltonics, Bremen, Germany). The spectra were visualized by FlexAnalysis 3.4 software, processed by MALDI Biotyper 3.1 and compared with an in-house reference database.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!