The largest database of trusted experimental protocols

Asap 2020 plus nitrogen adsorption apparatus

Manufactured by Micromeritics
Sourced in United States

The ASAP 2020 PLUS nitrogen adsorption apparatus is a laboratory equipment used to analyze the surface area and porosity of solid materials. It employs the principles of nitrogen adsorption to determine the specific surface area, pore volume, and pore size distribution of the sample.

Automatically generated - may contain errors

3 protocols using asap 2020 plus nitrogen adsorption apparatus

1

Characterization of Bi2S3-CdS Nanospheres

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 2

Characterizations of Bi2S3—CdS Nanospheres

The morphologies of Bi2S3—CdS nanospheres were examined by scanning electron microscopy (SEM, FEI INSPECT S50). The crystallinity and crystal phases of as-synthesized Bi2S3—CdS were studied by X-ray diffractometer (XRD Rigaku, Japan) measured with Cu-Kα radiation (λ=1.5418 Å) in the range of 10-80° with 1°/min scanning speed. UV-Vis diffuse reflectance spectrum of Bi2S3—CdS was recorded on a diffuse reflectance UV-Vis spectrophotometer (JASCO V-750). Micromeritics ASAP 2020 PLUS nitrogen adsorption apparatus (USA) was employed for BET surface area determination. Before analysis, samples were degassed at 180° C. Surface area was determined using N2 adsorption data in the relative pressure (P/P0) range of 0.05-0.3.

+ Open protocol
+ Expand
2

Characterization of Zinc Oxide Nanostructures

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 3

Physical Characterization

The morphologies of the zinc oxide nanoflowers and nanospheres were examined by scanning electron microscopy (SEM, FEI INSPECT S50), as shown in FIGS. 2A-2B and FIGS. 3A-3B, respectively. The crystallinity and crystal phases of the zinc oxide nanoflowers or nanospheres were studied by an X-ray diffractometer (XRD Rigaku, Japan) using Cu-Kα radiation (λ=1.5418 {acute over (Å)}) in the range of 10°-80° with 1°/min scanning speed. The XRD patterns for both nanoflowers and nanospheres arc shown in FIG. 1. UV-Vis diffuse reflectance spectra of zinc oxide nanoflowers and nanospheres, as shown in FIG. 4, were recorded on a diffuse reflectance UV-Vis spectrophotometer (JASCO V-750). Micromeritics ASAP 2020 PLUS nitrogen adsorption apparatus (USA) was employed for BET surface area determination. Before surface area analysis, samples were degassed at 180° C., and the surface area was then determined using N2 adsorption data in the relative pressure (P/P0) range of 0.05-0.3, as shown in FIG. 5. The BET surface area of zinc oxide nanoflowers was observed as 22.54 m2/g (pore size: 22.92 nm; pore volume 0.1291 cm3/g) while for nanospheres, the surface area was 9.51 m2/g (pore size: 30.74 nm; pore volume 0.0780 cm3/g).

+ Open protocol
+ Expand
3

Characterization of Bi2S3-CdS Nanospheres

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 2

Characterizations of Bi2S3—CdS Nanospheres

The morphologies of Bi2S3—CdS nanospheres were examined by scanning electron microscopy (SEM, FEI INSPECT S50). The crystallinity and crystal phases of as-synthesized Bi2S3—CdS were studied by X-ray diffractometer (XRD Rigaku, Japan) measured with Cu-Kα radiation (λ=1.5418 Å) in the range of 10-80° with 1°/min scanning speed. UV-Vis diffuse reflectance spectrum of Bi2S3—CdS was recorded on a diffuse reflectance UV-Vis spectrophotometer (JASCO V-750). Micromeritics ASAP 2020 PLUS nitrogen adsorption apparatus (USA) was employed for BET surface area determination. Before analysis, samples were degassed at 180° C. Surface area was determined using N2 adsorption data in the relative pressure (P/P0) range of 0.05-0.3.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!