Mca1396
The MCA1396 is a laboratory equipment product from Bio-Rad. It is a piece of hardware designed for specific laboratory functions. A detailed and unbiased description of its core function is not available at this time.
Lab products found in correlation
19 protocols using mca1396
M2e Epitope Mapping in HEK293T Cells
Nanobody Binding to Human PD-1 Cells
Example 1
Binding to cell-expressed human PD-1 was evaluated on human PD-1 over-expressing CHO cells. A Nanobody dilution series was prepared in assay buffer: PBS/10% FBS/0.05% sodium azide. 1×105 cells/well were transferred to a 96-well V-bottom plate and resuspended in 100 μL Nanobody dilution. After 30 minutes incubation at 4° C., the cells were washed with 100 μL/well assay buffer and resuspended in 100 μL/well of 1 μg/ml anti-FLAG (Sigma, F1804) or anti-HIS (AbD Serotec, MCA 1396). Samples were incubated for 30 minutes at 4° C., washed with 100 μL/well assay buffer, and resuspended in 100 μL/well of 5 μg/ml PE-labeled Goat anti-mouse IgG (Jackson ImmunoResearch, 115-116-071). Samples were incubated for 30 minutes at 4° C., washed, and resuspended in 100 μL/well of 5 nM TOPRO3 (LifeTechnologies, T3606) solution before analysis on FACS CANTO II (BD). The data from these experiments are set forth in
This Example demonstrated that the anti-human PD-1 monovalent Nanobody F023700706 bound to human PD-1 in a manner similar to the F023700275 monovalent Nanobody from which it was derived.
Quantifying CsgA Amyloid Fiber Assembly
Visualizing CsgA Fibers with Fluorescent Labeling
Antibody Raising and Detection
M2e-peptide ELISA for VHH Detection
Human PD-1 Binding Nanobody Evaluation
Example 1
Binding to cell-expressed human PD-1 was evaluated on human PD-1 over-expressing CHO cells. A Nanobody dilution series was prepared in assay buffer: PBS/10% FBS/0.05% sodium azide. 1×105 cells/well were transferred to a 96-well V-bottom plate and resuspended in 100 μL Nanobody dilution. After 30 minutes incubation at 4° C., the cells were washed with 100 μL/well assay buffer and resuspended in 100 μL/well of 1 μg/ml anti-FLAG (Sigma, F1804) or anti-HIS (AbD Serotec, MCA 1396). Samples were incubated for 30 minutes at 4° C., washed with 100 μL/well assay buffer, and resuspended in 100 μL/well of 5 μg/ml PE-labeled Goat anti-mouse IgG (Jackson ImmunoResearch, 115-116-071). Samples were incubated for 30 minutes at 4° C., washed, and resuspended in 100 μL/well of 5 nM TOPRO3 (LifeTechnologies, T3606) solution before analysis on FACS CANTO II (BD). The data from these experiments are set forth in
This Example demonstrated that the anti-human PD-1 monovalent Nanobody F023700706 bound to human PD-1 in a manner similar to the F023700275 monovalent Nanobody from which it was derived.
Evaluating Anti-Human PD-1 Nanobody Binding
Example 1
Binding to cell-expressed human PD-1 was evaluated on human PD-1 over-expressing CHO cells. A Nanobody dilution series was prepared in assay buffer: PBS/10% FBS/0.05% sodium azide. 1×105 cells/well were transferred to a 96-well V-bottom plate and resuspended in 100 μL Nanobody dilution. After 30 minutes incubation at 4° C., the cells were washed with 100 μL/well assay buffer and resuspended in 100 μL/well of 1 μg/ml anti-FLAG (Sigma, F1804) or anti-HIS (AbD Serotec, MCA 1396). Samples were incubated for 30 minutes at 4° C., washed with 100 μL/well assay buffer, and resuspended in 100 μL/well of 5 μg/ml PE-labeled Goat anti-mouse IgG (Jackson ImmunoResearch, 115-116-071). Samples were incubated for 30 minutes at 4° C., washed, and resuspended in 100 μL/well of 5 nM TOPRO3 (LifeTechnologies, T3606) solution before analysis on FACS CANTO II (BD). The data from these experiments are set forth in
This Example demonstrated that the anti-human PD-1 monovalent Nanobody F023700706 bound to human PD-1 in a manner similar to the F023700275 monovalent Nanobody from which it was derived.
ELISA Binding Assay for SARS and MERS Protein Interactions
Visualizing CsgA Fibers with Fluorescent Labeling
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!