The largest database of trusted experimental protocols

N sulfosuccinyimidyl 6 4 azido 2 nitrophenylamino hexanoate sulfo sanpah

Manufactured by Thermo Fisher Scientific
Sourced in United States

N-sulfosuccinyimidyl-6-(4′-azido-2′-nitrophenylamino) hexanoate (sulfo-SANPAH) is a heterobifunctional cross-linking reagent. It contains an N-hydroxysuccinimide (NHS) ester for reaction with primary amines and an azido group for photoactivated conjugation to surfaces.

Automatically generated - may contain errors

3 protocols using n sulfosuccinyimidyl 6 4 azido 2 nitrophenylamino hexanoate sulfo sanpah

1

Substrate Preparation for Cell Culture

Check if the same lab product or an alternative is used in the 5 most similar protocols
The glass cover slips were treated with 3-aminopropyltrimethoxysilane and 0.5% glutaraldehyde. Then, 8% acrylamide (sigma, USA) was mixed with varying concentrations of bisacrylamide (0.1% and 0.7%) (Sigma, USA). Polymerization was initiated with N,N,N′,N′-tetramethylethylenediamine (TEMED) and ammonium persulfate (sigma, USA). Then, 0.2 mg/mL N-sulfosuccinyimidyl-6-(4′-azido-2′-nitrophenylamino) hexanoate (sulfo-SANPAH) (Thermo, USA) dissolved in 10 mM HEPES (pH 8.5) was applied to cover polyacrylamide (PAAM) gel and exposed to 365 nm ultraviolet light for 70 min for photo activation in 24-well plates. The PAAm sheet was washed for three times with PBS to remove excess reagent and incubated with fibronectin solution (1 μg/cm2; Sigma, USA) overnight at 4° C. Before the cells were plated, the PAAm matrices were soaked in PBS and then in DMEM at 4° C. The Young’s modulus of the PAAm hydrogels was quantified using a biomechanical testing machine under contact load at a strain rate of 0.5 mm/s [45 (link)].
+ Open protocol
+ Expand
2

Tunable Polyacrylamide Substrates for Cell Culture

Check if the same lab product or an alternative is used in the 5 most similar protocols
Tunable polyacrylamide substrates were prepared as reported previously 16 (link). Briefly, glass coverslips were treated with 3-aminopropyltrimethoxysilane and 0.5% glutaraldehyde. Solution of 8% acrylamide (Sigma, USA) and varying concentrations of bis-acrylamide (0.1%, 0.5%, and 0.7%) (Sigma, USA) were mixed. Polymerization was initiated with N,N,N',N'-tetramethylethylenediamine (TEMED) and ammonium persulfate (Sigma, USA). Then 0.2 mg/ml N-sulfosuccinyimidyl-6-(4'-azido-2'-nitrophenylamino) hexanoate (sulfo-SANPAH) (Thermo, USA) dissolved in 10 mM HEPES (pH 8.5) was applied to cover the polyacrylamide gel and exposed to 365 nm ultraviolet light for 70 minutes for photoactivation in 24-well plates. The polyacrylamide sheet was washed three times with phosphate buffered saline (PBS) to remove excess reagent and incubated with fibronectin solution (1 μg/cm2; Sigma, USA) each well overnight at 4°C. Before cells were plated, the polyacrylamide substrates were soaked in PBS and then in DMEM at 4°C. The Young's modulus of polyacrylamide hydrogels was quantified using a biomechanical testing machine under contact load at a strain rate of 0.5 mm/s.
+ Open protocol
+ Expand
3

Tunable ECM Hydrogel Fabrication

Check if the same lab product or an alternative is used in the 5 most similar protocols
Tunable ECM was prepared based on a previous report [8 ]. Briefly, 8% acrylamide (Sigma-Aldrich, St. Louis, MO, USA) and varying concentrations of bis-acrylamide (0.1%, 0.3%, 0.5%, and 0.7%) (Sigma-Aldrich) were mixed and then polymerized with tetramethylethylenediamine (TEMED) and ammonium persulfate (AP) (Sigma-Aldrich) on aminosilanized 12-mm or 24-mm-diameter coverslips. We used previous methods to make ECM gels [32 (link)]. The polyacrylamide coverslips were subsequently coated with 0.2 mg/ml N-sulfosuccinyimidyl-6-(4′-azido-2′-nitrophenylamino) hexanoate (sulfo-SANPAH; ThermoScientific, Waltham, MA, USA) dissolved in 10 mM HEPES (pH 8.5) and exposed to 365-nm ultraviolet light for 70 min. Subsequently, the coverslips were incubated in fibronectin solution (1 μg/cm2; Sigma-Aldrich, USA) overnight at 4 °C prior to cell plating. The elastic modulus for each concentration of polyacrylamide hydrogel was measured with a biomechanical testing machine under contact load at a strain rate of 0.5 mm/s.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!